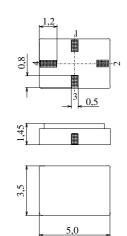


SAW Components

Data Sheet R884

SAW Components R884 Resonator 310,00 MHz

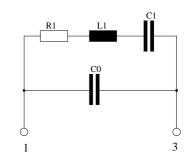

Data Sheet

Features

- 1-port resonator
- Provides reliable, fundamental mode, quartz frequency stabilization i.e. in transmitters or local oscillators
- Protection layer: Elpas

Terminals

Ni, gold plated



Ceramic package QCC4A

Dimensions in mm, approx. weight 0,1 g

Pin configuration

1 Input 3 Output, grounded in 1-port conf. 2,4 Ground (case)

Туре	Ordering code	Marking and Package	Packing		
		according to	according to		
R884	B39311-R 884-H210	C61157-A7-A86	F61074-V8175-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	TA	-40/+125	°C	
Storage temperature range	T _{stg}	-40/+125	°C	
DC voltage	V _{DC}	12	V	between any terminals
Source power	Ps	0	dBm	

Apr 06, 2004

SAW Components		R884
Resonator		310,00 MHz
Data Sheet		
Characteristics		
Reference temperature: Terminating source impedance: Terminating load impedance:	$T_{A} = 25 °C$ $Z_{S} = 50 \Omega$ $Z_{L} = 50 \Omega$	

		min.	typ.	max.	
Center frequency 1)	f _c	309,90	310,00	310,10	MHz
Minimum insertion attenuation	α_{min}	_	1,5	1,9	dB
Unloaded quality factor	$Q_{\rm U}$	9000	11900	_	
Ageing of <i>f</i> _c				-50/+50	ppm
Equivalent circuit elements					
Motional capacitance	C_1		2,258	_	fF
Motional inductance	L_1		116,7	_	μH
Motional resistance	R_1		19	25	Ω
Parallel capacitance ²⁾	C_0	—	2,7	_	pF
Temperature coefficient of frequency ³⁾	TC _f	—	-0,032	—	ppm/K ²
Turnover temperature	T_0	25		55	°C

1) Center frequency is defined as maximum of the real part of the admittance

²⁾ If used in two port configuration (pin 1-input, pin 3-output) C_0 is reduced by approx. 0,3 pF. ³⁾Temperature dependence of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

SAW Components	R884
Resonator	310,00 MHz

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW CE AE PD P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2004. All Rights Reserved. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

The information contained in this brochure describes the type of component and shall not be considered as guaranteed characteristics. Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

Data Sheet

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

Apr 06, 2004