April 1998 Revised October 2004

FAIRCHILD

SEMICONDUCTOR

74VCX162601

Low Voltage 18-Bit Universal Bus Transceivers with 3.6V Tolerant Inputs and Outputs and 26 Ω Series Resistors in the B-Port Outputs

General Description

The VCX162601, 18-bit universal bus transceiver, combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH-to-LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/flip-flop on the LOW-to-HIGH transition of CLKAB. Output-enable OEAB is active-LOW. When OEAB is HIGH, the outputs are in the HIGH-impedance state.

 $\frac{\text{Data flow for B to A is similar to that of A to B but uses}}{\overline{\text{OEBA}}, \text{LEBA}, \text{CLKBA and }\overline{\text{CLKENBA}}.}$

The 74VCX162601 is designed for low voltage (1.4V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V. The VCX162601 is also designed with 26Ω series resistors in the B-Port outputs. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers/transmitters.

Features

- \blacksquare 1.4V to 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- 26Ω series resistors in B-Port outputs
 t_{PD} (A to B)
- 3.8 ns max for 3.0V to 3.6V V_{CC}
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- Static Drive (I_{OH}/I_{OL} B outputs)
 - ±12 mA @ 3.0V V_{CC}
- Uses patented noise/EMI reduction circuitry
- Latchup performance exceeds 300 mA
- ESD performance:

Human body model > 2000V Machine model >200V

Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74VCX162601MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Pin Descriptions

Pin Names	Description
OEAB, OEBA	Output Enable Inputs (Active LOW)
LEAB, LEBA	Latch Enable Inputs
CLKAB, CLKBA	Clock Inputs
CLKENAB, CLKENBA	Clock Enable Inputs
A ₁ -A ₁₈	Side A Inputs or 3-STATE Outputs
B ₁ -B ₁₈	Side B Inputs or 3-STATE Outputs

© 2004 Fairchild Semiconductor Corporation DS500150

74VCX162601

Connection I	Diagram	I
Connection I	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	56 CLKENAB 55 CLKAB 55 CLKAB 53 GND 52 B2 51 B3 50 Vcc 49 B4 48 B5 47 B6 46 GND 45 B7 44 B8 43 B9 44 B1 40 B12 37 B14 38 B13 37 B14 36 B15 35 Vcc 34 B16 33 B17 34 B18 30 CLKBA
LEBA —	28	29 — CLKENBA

Function Table (Note 2)

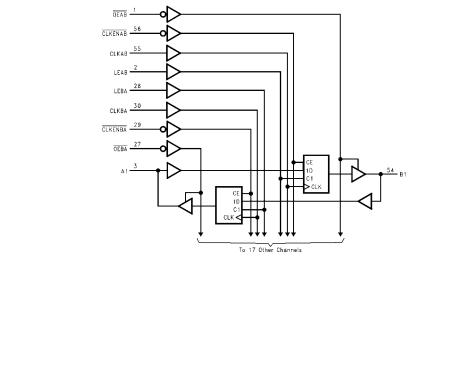
	Inputs					
CLKENAB	OEAB	LEAB	CLKAB	An	Bn	
Х	Н	Х	Х	Х	Z	
Х	L	н	х	L	L	
х	L	н	х	н	н	
н	L	L	х	Х	B ₀ (Note 3)	
н	L	L	х	Х	B ₀ (Note 3)	
L	L	L	\uparrow	L	L	
L	L	L	\uparrow	н	н	
L	L	L	L	Х	B ₀ (Note 3)	
L	L	L	н	Х	B ₀ (Note 4)	

 L
 L
 L

 H = HIGH Voltage Level

 L
 LOW Voltage Level

 X = Immaterial (HIGH or LOW, inputs may not float)


 Z = High Impedance

Note 2: A-to-B data flow is shown; B-to-A flow is similar but uses OEBA, LEBA, CLKBA, and CLKENBA.

Note 3: Output level before the indicated steady-state input conditions were established.

Note 4: Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

Logic Diagram

www.fairchildsemi.com

Absolute Maximum Rat	ings(Note 5)	Recommended Operatin	g
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 7)	
DC Input Voltage (VI)	-0.5V to +4.6V	Power Supply	
Output Voltage (V _O)		Operating	1.4V to 3.6V
Outputs 3-STATE	-0.5V to +4.6V	Input Voltage	-0.3V to 3.6V
Outputs Active (Note 6)	–0.5 to V_{CC} + 0.5V	Output Voltage (V _O)	
DC Input Diode Current (I_{IK}) $V_I < 0V$	–50 mA	Output in Active States	0V to V _{CC}
DC Output Diode Current (I _{OK})		Output in 3-STATE	0.0V to 3.6V
V _O < 0V	–50 mA	Output Current in I _{OH} /I _{OL} B Outputs	
$V_{O} > V_{CC}$	+50 mA	$V_{CC} = 3.0V$ to 3.6V	±12 mA
DC Output Source/Sink Current		$V_{CC} = 2.3V$ to 2.7V	±8 mA
(I _{OH} /I _{OL})	±50 mA	V _{CC} = 1.65V to 1.95V	±3 mA
DC V _{CC} or Ground Current per		$V_{CC} = 1.4V$ to 1.6V	±1 mA
Supply Pin (I _{CC} or Ground)	±100 mA	Output Current in $\pm I_{OH}/I_{OL}$ A Outputs	
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	$V_{CC} = 3.0V$ to 3.6V	±24 mA
		$V_{CC} = 2.3V$ to 2.7V	±18 mA
		$V_{CC} = 1.65V$ to 2.3V	±6 mA
		$V_{CC} = 1.4V$ to 1.6V	±2 mA
		Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
		Minimum Input Edge Rate (Δt/ΔV)	
		$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V
		Note 5: The "Absolute Maximum Ratings" are those	e values beyond which

10 ns/V Note 5: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Rat-ings. The Recommended Operating Conditions tables will define the condi-tions for actual device operation.

74VCX162601

Note 6: I_O Absolute Maximum Rating must be observed.

Note 7: Floating or unused pin (inputs or I/O's) must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		2.7 - 3.6	2.0		
			2.3 - 2.7	1.6		v
			1.65 - 2.3	$0.65 \times V_{CC}$		v
			1.4 - 1.6	$0.65 \times V_{CC}$		
V _{IL}	LOW Level Input Voltage		2.7 - 3.6		0.8	
			2.3 - 2.7		0.7	V
			1.65 - 2.3		$0.35 \times V_{CC}$	v
			1.4 - 1.6		$0.35 \times V_{CC}$	
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu\text{A}$	2.7 - 3.6	V _{CC} - 0.2		
	A Outputs	$I_{OH} = -6 \text{ mA}$	2.7	2.2		
		$I_{OH} = -8 \text{ mA}$	3.0	2.4		
		$I_{OH} = -12 \text{ mA}$	3.0	2.2		
		$I_{OH} = -100 \ \mu A$	2.3 - 2.7	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		v
		$I_{OH} = -12 \text{ mA}$	2.3	1.8		v
		I _{OH} = -18 mA	2.3	1.7		
		$I_{OH} = -100 \ \mu A$	1.65 - 2.3	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	1.65	1.25		
		$I_{OH} = -100 \ \mu A$	1.4 - 1.6	V _{CC} - 0.2		
		$I_{OH} = -2 \text{ mA}$	1.4	1.05		

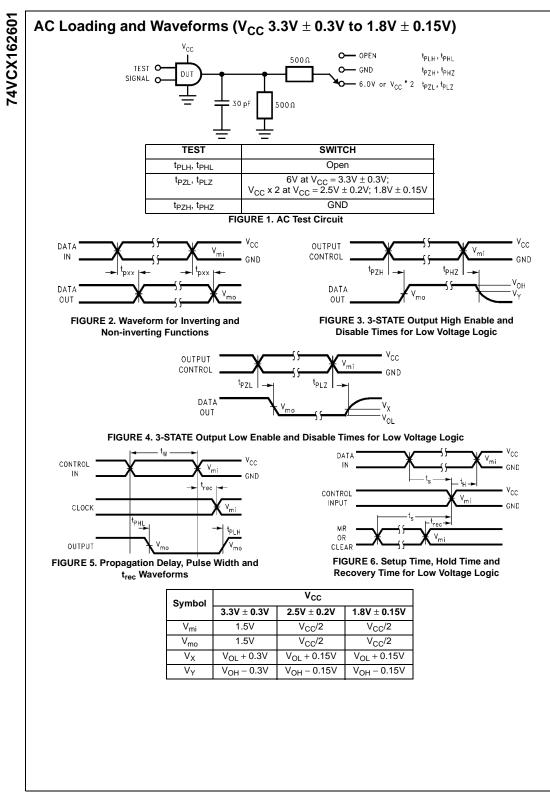
Vou	Parameter	Conditions	V _{CC} (V)	Min	Мах	Ur
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 - 3.6	V _{CC} - 0.2		
	B Outputs	$I_{OH} = -6 \text{ mA}$	2.7	2.2		
		$I_{OH} = -8 \text{ mA}$	3.0	2.4		
		I _{OH} = -12 mA I _{OH} = -100 μA	3.0	2.2		
		$I_{OH} = -4 \text{ mA}$	2.3 - 2.7	V _{CC} - 0.2 2.0		
		$I_{OH} = -6 \text{ mA}$	2.3	1.8		`
		$I_{OH} = -8 \text{ mA}$	2.3	1.7		
		I _{OH} = -100 μA	1.65 - 2.3	V _{CC} - 0.2		
		$I_{OH} = -3 \text{ mA}$	1.65	1.25		
		I _{OH} = -100 μA	1.4 - 1.6	V _{CC} - 0.2		
		$I_{OH} = -1 \text{ mA}$	1.4	1.05		
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu A$	2.7 - 3.6		0.2	
	A Outputs	$I_{OL} = 12 \text{ mA}$ $I_{OL} = 18 \text{ mA}$	2.7 3.0		0.4 0.55	
		$I_{OL} = 24 \text{ mA}$	3.0		0.55	
		$I_{OL} = 100 \mu\text{A}$	2.3 - 2.7		0.2	
		$I_{OL} = 12 \text{ mA}$	2.3		0.4	,
		I _{OL} = 18 mA	2.3		0.6	
		$I_{OL} = 100 \ \mu A$	1.65 - 2.3		0.2	
		$I_{OL} = 6 \text{ mA}$	1.65		0.3	
		I _{OL} = 100 μA	1.4 - 1.6		0.2	
<u></u>	LOW Lovel Output Veltage	$I_{OL} = 2 \text{ mA}$	1.4		0.35	
V _{OL}	LOW Level Output Voltage B Outputs	$I_{OL} = 100 \ \mu A$ $I_{OL} = 6 \ m A$	2.7 - 3.6 2.7		0.2	
	Doupuis	$I_{OL} = 8 \text{ mA}$	3.0		0.55	
		$I_{OL} = 12 \text{ mA}$	3.0		0.8	
		I _{OL} = 100 μA	2.3 -2.7		0.2	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	,
		I _{OL} = 8 mA	2.3		0.6	
		$I_{OL} = 100 \ \mu A$	1.65 - 2.3		0.2	
		$I_{OL} = 3 \text{ mA}$	1.65		0.3	
		$I_{OL} = 100 \mu A$	1.4 - 1.6 1 4		0.2 0.35	
lı –	Input Leakage Current	$I_{OL} = 1 \text{ mA}$ $0V \le V_I \le 3.6V$	1.4		±5.0	μ
l _{oz}	3-STATE Output Leakage	$0V \le V_{\rm Q} \le 3.6V$	1.4 - 3.6		±10.0	μ
-02	· · · · · · · · · · · · · · · ·	$V_{I} = V_{IH} \text{ or } V_{IL}$				
I _{OFF}	Power Off Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10.0	μ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.4 - 3.6		20.0	μ
		$V_{CC} \leq (V_{I}, V_{O}) \leq 3.6V \text{ (Note 8)}$	1.4 - 3.6		±20.0	
ΔI_{CC}	Increase in I _{CC} per Input puts disabled or 3-STATE only.	$V_{IH} = V_{CC} - 0.6V$	2.7 - 3.6		750	μ

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Figure
Symbol	Parameter	Conditions	(V)	Min	Max	Units	Numbe
f _{MAX}	Maximum Clock Frequency	C _L = 30 pF	3.3 ± 0.3	250			
			2.5 ± 0.2	200		MHz	
			1.8 ± 0.15	100		11112	
		C _L = 15 pF	1.5 ± 0.1	80			
t _{PHL}	Propagation Delay	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.8	2.9		Figures
t _{PLH}	B to A		2.5 ± 0.2	1.0	3.5	ns	1, 2
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	$\frac{1.8 \pm 0.15}{1.5 \pm 0.1}$	1.5 1.0	7.0 14.0	113	Figures
•	Propagation Dalay	$C_{L} = 30 \text{ pF}, R_{L} = 500\Omega$	3.3 ± 0.3	0.8	3.8		7, 8
t _{PHL} t _{PLH}	Propagation Delay A to B	$G_{L} = 30 \text{ pr}, \text{ R}_{L} = 500\Omega$	3.3 ± 0.3 2.5 ± 0.2	1.0	3.8 4.6		Figures
PLH	100		1.8 ± 0.15	1.5	9.2	ns	1, 2
		$C_{L} = 15 \text{ pF}, R_{L} = 500\Omega$	1.5 ± 0.1	1.0	18.4		Figures
							7, 8
t _{PHL}	Propagation Delay	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.8	3.5		Figures
t _{PLH}	Clock to A		2.5 ± 0.2	1.0 1.5	4.4 8.8	ns	1, 2
		$C_{L} = 15 \text{ pF}, R_{L} = 500\Omega$	1.8 ± 0.15 1.5 ± 0.1	1.5	8.8 17.6	113	Figures
		$O_{L} = 15 \text{ pr}, \text{ N}_{L} = 50022$	1.5 ± 0.1	1.0	17.0		7, 8
t _{PHL}	Propagation Delay	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.8	4.4		
t _{PLH}	Clock to B		2.5 ± 0.2	1.0	5.5		Figures 1, 2
			1.8 ± 0.15	1.5	9.8	ns	., _
		$C_L = 15 \text{ pF}, R_L = 500\Omega$	1.5 ± 0.1	1.0	19.6		Figures 7, 8
t _{PHL}	Propagation Delay	$C_{L} = 30 \text{ pF}, R_{L} = 500\Omega$	3.3 ± 0.3	0.8	3.5		
t _{PLH}	LEBA to A		2.5 ± 0.2	1.0	4.4		Figures 1, 2
			1.8 ± 0.15	1.5	8.8	ns	1, 2
		$C_L = 15 \text{ pF}, R_L = 500\Omega$	1.5 ± 0.1	1.0	17.6		Figures 7, 8
t _{PHL}		$C_{L} = 30 \text{ pF}, R_{L} = 500\Omega$	3.3 ± 0.3	0.8	4.4		.,.
t _{PLH}			2.5 ± 0.2	1.0	5.8		Figures
			1.8 ± 0.15	1.5	9.8	ns	1, 2
		$C_L = 15 \text{ pF}, R_L = 500\Omega$	1.5 ± 0.1	1.0	19.6		Figures 7, 8
t _{PZL}	Output Enable Time	$C_{L} = 30 \text{ pF}, R_{L} = 500\Omega$	3.3 ± 0.3	0.8	3.8		
t _{PZH}	OEBA to A		2.5 ± 0.2	1.0	4.9		Figures 1, 3, 4
			1.8 ± 0.15	1.5	9.8	ns	1, 3, 4
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	19.6		Figures 7, 8, 9,
t _{PZL}	Output Enable Time	$C_{L} = 30 \text{ pF}, R_{L} = 500\Omega$	3.3 ± 0.3	0.8	4.3		10
t _{PZH}	OEAB to B		2.5 ± 0.2	1.0	4.9		Figures
			1.8 ± 0.15	1.5	8.8	ns	1, 3, 4
		$C_L = 15 \text{ pF}, R_L = 500\Omega$	1.5 ± 0.1	1.0	17.6		Figures 7, 9, 10
t _{PLZ}	Output Disable Time	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.8	3.7		
t _{PHZ}	OEBA to A		2.5 ± 0.2	1.0	4.2		Figures 1, 3, 4
			1.8 ± 0.15	1.5	7.6	ns	, -,
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	15.2		Figures 7, 8, 9,
t _{PLZ}	Output Disable Time	$C_{L} = 30 \text{ pF}, R_{L} = 500\Omega$	3.3 ± 0.3	0.8	4.3		10
t _{PHZ}	OEBA to B		2.5 ± 0.2	1.0	4.9		Figures
			1.8 ± 0.15	1.5	8.8	ns	1, 3, 4
		$C_L = 15 \text{ pF}, \text{ R}_L = 500 \Omega$	1.5 ± 0.1	1.0	17.6		Figures 7, 9, 10

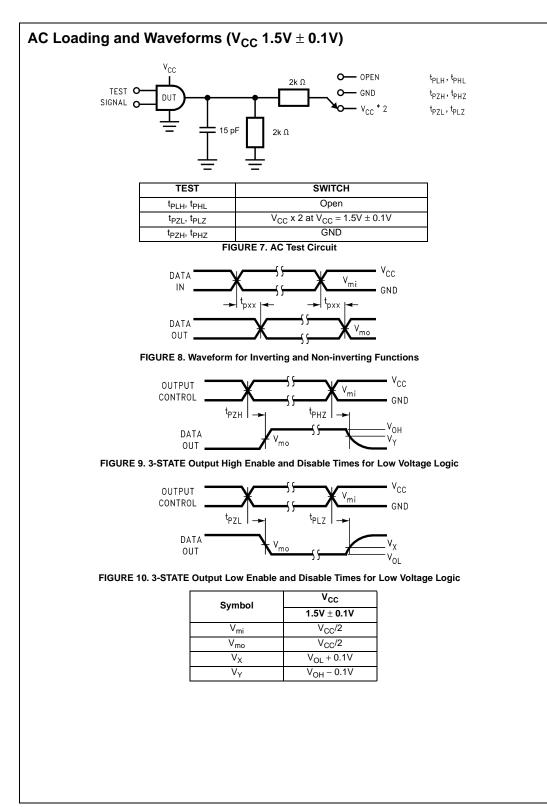
74VCX162601

www.fairchildsemi.com

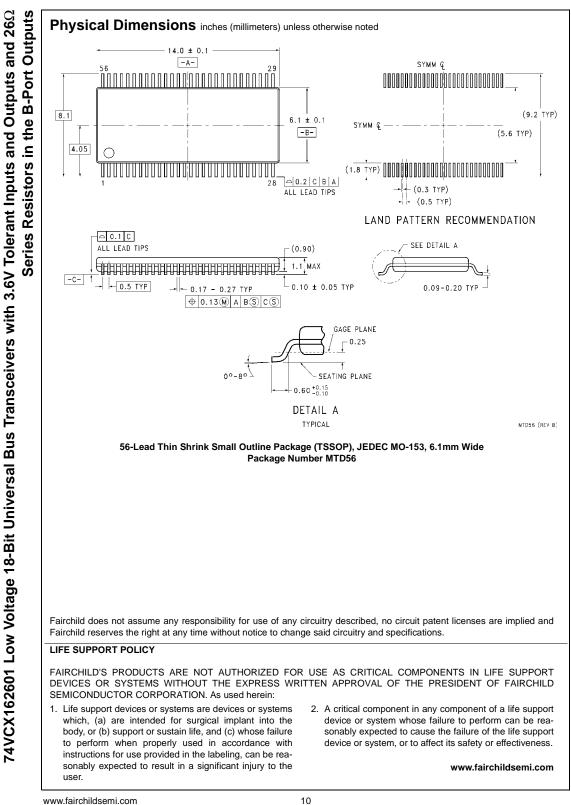
5


Symbol	Parameter	Conditions	v _{cc}	V_{CC} $T_A = -40^{\circ}C$		Units	Figure
Symbol	Farameter	Conditions	(V)	Min	Max	Units	Numbe
t _S	Setup Time	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	1.5			
			2.5 ± 0.2	1.5		ns	Figure
			1.8 ± 0.15	2.5		115	Figure
		$C_{L} = 15 \text{ pF}, R_{L} = 500\Omega$	1.5 ± 0.1	3.0			
t _H	Hold Time	$C_L = 30 \text{ pF}, \text{ R}_L = 500 \Omega$	3.3 ± 0.3	1.0			
			2.5 ± 0.2	1.0		ns	Figure
			1.8 ± 0.15	1.0		115	Figure
		$C_{L} = 15 \text{ pF}, R_{L} = 500\Omega$	1.5 ± 0.1	2.0			
t _W	Pulse Width	$C_L = 30 \text{ pF}, \text{ R}_L = 500 \Omega$	3.3 ± 0.3	1.5			
			2.5 ± 0.2	1.5		ns	Figure
			1.8 ± 0.15	4.0		115	Figure
		$C_L = 15 \text{ pF}, \text{ R}_L = 500 \Omega$	1.5 ± 0.1	4.0			
t _{OSHL}	Output to Output Skew	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3		0.5		
t _{OSLH}	(Note 10)		2.5 ± 0.2		0.5	ns	
			1.8 ± 0.15		0.75	115	
		$C_{1} = 15 \text{ pF}, R_{1} = 2k\Omega$	1.5 ± 0.1		1.5		

Note 9: For $C_L = 50 pF$, add approximately 300ps to the AC maximum specification.


Note 10: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Symbol	Parameter		Conditions	V _{CC} (V)	T _A = +25°C Typical	Units
V _{OLP}	Quiet Output Dynamic	C _L =	30 pF, $V_{IH} = V_{CC}$, $V_{IL} = 0V$	1.8	0.25	
	Peak V _{OL} , B to A			2.5	0.6	V
				3.3	0.8	
/ _{OLP}	Quiet Output Dynamic	C _L =	30 pF, $V_{IH} = V_{CC}$, $V_{IL} = 0V$	1.8	0.15	
	Peak V _{OL} , A to B			2.5	0.25	V
,			00 E.V. V. 0V	3.3	0.35	
/ _{OLV}	Quiet Output Dynamic	C _L =	30 pF, $V_{IH} = V_{CC}$, $V_{IL} = 0V$	1.8	-0.25	V
	Valley V _{OL} , B to A			2.5 3.3	-0.6 -0.8	v
/ _{OLV}	Quiet Output Dynamic	C. =	30 pF, V _{IH} = V _{CC} , V _{IL} = 0V	1.8	-0.8	
OLV	Valley V _{OL} , A to B	UL -	00 pi , VIII - VCC, VII - 0V	2.5	-0.25	V
				3.3	-0.35	•
/ _{онv}	Quiet Output Dynamic	C ₁ =	30 pF, V _{IH} = V _{CC} , V _{IL} = 0V	1.8	1.5	
0.117	Valley V _{OH} , B to A	-		2.5	1.9	V
				3.3	2.2	
V _{OHV}	Quiet Output Dynamic	C _L =	30 pF, $V_{IH} = V_{CC}$, $V_{IL} = 0V$	1.8	1.5	
	Valley V _{OH} , A to B			2.5	2.05	V
				3.3	2.65	
C _{I/O}	Output Capacitance					
Symbol	Parameter Input Capacitance		Conditions V _{CC} = 1.8V, 2.5V, or 3.3V,		$T_A = +25^{\circ}C$	Units
			$V_I = 0V \text{ or } V_{CC}$		6.0	pF
Ci/O	Output Capacitance		$V_{I} = 0V, \text{ or } V_{CC},$		7.0	pF
PD	Power Dissipation Capacitance		$V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$ $V_{I} = 0V \text{ or } V_{CC}, f = 10 \text{ MHz}$			
PD			$V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$		20.0	pF


74VCX162601

www.fairchildsemi.com

