

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

NC7SV32 TinyLogic[®] ULP-A 2-Input OR Gate

Features

FAIRCHILD

- 0.9V to 3.6V V_{CC} Supply Operation
- 3.6V Over-Voltage Tolerant I/Os at Vcc from 0.9V to 3.6V
- Extremely High Speed t_{PD}
 - 1.0ns: Typical for 2.7V to 3.6V V_{CC}
 - 1.2ns: Typical for 2.3V to 2.7V V_{CC}
 - 2.0ns: Typical for 1.65V to 1.95V V_{CC}
 - 3.2ns: Typical for 1.4V to 1.6V V_{CC}
 - 6.0ns: Typical for 1.1V to 1.3V V_{CC}
 - 13.0ns: Typical for 0.9V V_{CC}
- Power-Off High-Impedance Inputs and Outputs
- High Static Drive (I_{OH}/I_{OL})
 - $\pm 24mA$ at 3.00V V_{CC}
 - $\pm 18 mA$ at 2.30V V_{CC}
 - $\pm 6mA$ at 1.65V V_{CC}
 - \pm 4mA at 1.4V V_{CC}
 - $\pm 2mA$ at 1.1V V_{CC}
 - $\pm 0.1 mA$ at 0.9V V_{CC}
- Uses Proprietary Quiet Series[™] Noise/EMI Reduction Circuitry
- Ultra-Small MicroPak[™] Packages
- Ultra-Low Dynamic Power

Ordering Information

Part Number	Top Mark	Package	Packing Method
NC7SV32P5X	V32	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3000 Units on Tape & Reel
NC7SV32L6X	G6	6-Lead MicroPak™, 1.00mm Wide	5000 Units on Tape & Reel
NC7SV32FHX	G6	6-Lead, MicroPak2™, 1x1mm Body, .35mm Pitch	5000 Units on Tape & Reel

Description

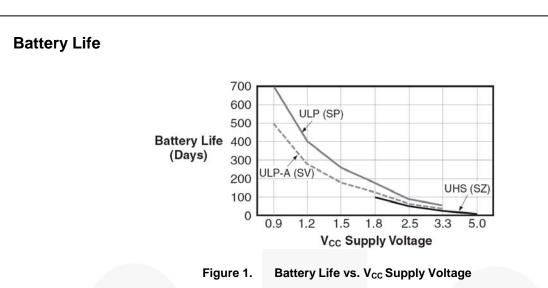
The NC7SV32 is a single two-input OR gate from

Fairchild's Ultra-Low Power (ULP-A) Series of TinyLogic[®]. ULP-A is ideal for applications that require

extreme high speed, high drive, and low power. This product is designed for a wide low-voltage operating

range (0.9V to 3.6V V_{CC}) and applications that require more drive and speed than the TinyLogic[®] ULP series,

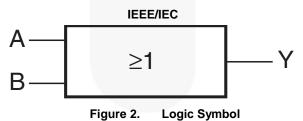
The NC7SV32 is uniquely designed for optimized power

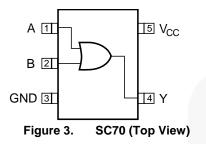

and speed and is fabricated with an advanced CMOS technology to achieve high-speed operation while

but still offer best-in-class, low-power operation.

maintaining low CMOS power dissipation.

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation.


MicroPak™ and Quiet Series™ are trademarks of Fairchild Semiconductor Corporation.


Notes:

- TinyLogic[®] ULP and ULP-A with up to 50% less power consumption can extend battery life significantly. Battery Life = (V_{battery}•I_{battery}•.9)/(P_{device})/24hrs/day
- where, P_{device} = (I_{CC} V_{CC}) + (C_{PD} + C_L) V_{CC2} f.
 Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with C_L = 15pF load.

Pin Configurations

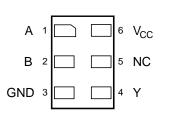


Figure 4. MicroPak™ (Top Through View)

NC7SV32 — TinyLogic[®] ULP-A 2-Input OR Gate

Pin Definitions

Pin # SC70	Pin # MicroPak™	Name	Description
1	1	А	Input
2	2	В	Input
3	3	GND	Ground
4	4	Y	Output
	5	NC	No Connect
5	6	V _{CC}	Supply Voltage

Function Table

Inp	outs	Output
А	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	Н

H = HIGH Logic Level

L = LOW Logic Level

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Para	ameter	Min.	Max.	Unit
V _{CC}	Supply Voltage		-0.5	4.6	V
V _{IN}	DC Input Voltage		-0.5	4.6	V
14		HIGH or LOW State ⁽³⁾	-0.5	V _{CC} + 0.5	V
Vout	DC Output Voltage	V _{CC} =0V	-0.5	4.6	V
I _{IK}	DC Input Diode Current	$V_{IN} < 0V$		-50	mA
	DC Output Diada Outpat	V _{OUT} < 0V		-50	
loк	DC Output Diode Current	$V_{OUT} > V_{CC}$		+50	mA
I _{OH} /I _{OL}	DC Output Source/Sink Curren		±50	mA	
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per	Supply Pin		±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature Under B	ias		+150	°C
TL	Junction Lead Temperature, So	oldering 10 Seconds		+260	°C
		SC70-5		150	
PD	Power Dissipation at +85°C	MicroPak™-6		130	mW
		MicroPak2™-6		120	
ESD	Human Body Model, JEDEC:JE	SD22-A114		4000	V
ESD	Charge Device Model, JEDEC:	JESD22-C101		2000	V

Note:

3. IO absolute maximum rating must be observed.

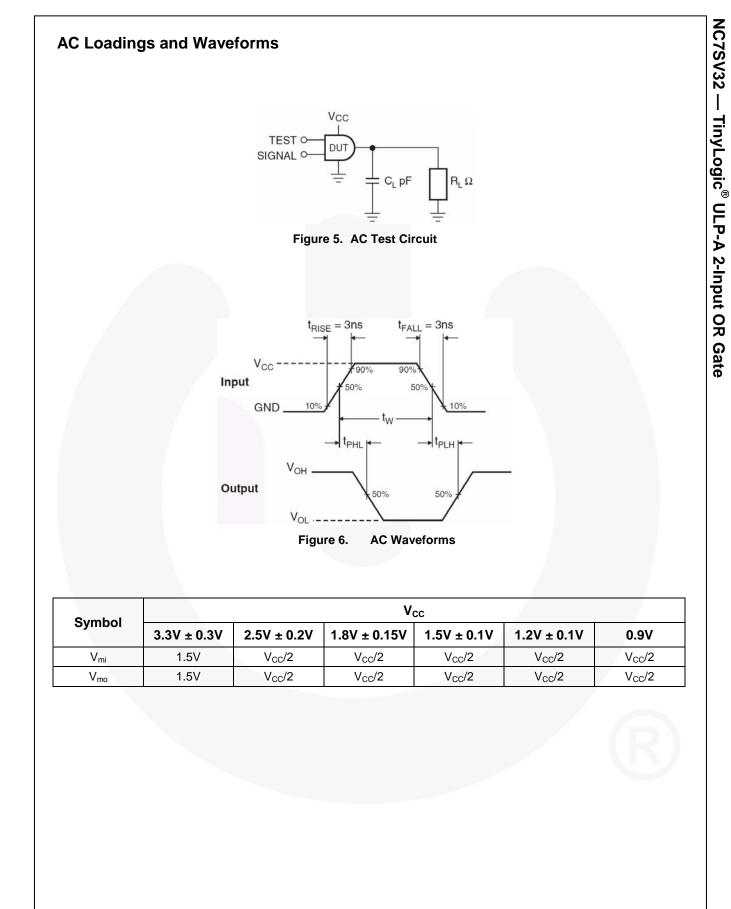
Recommended Operating Conditions

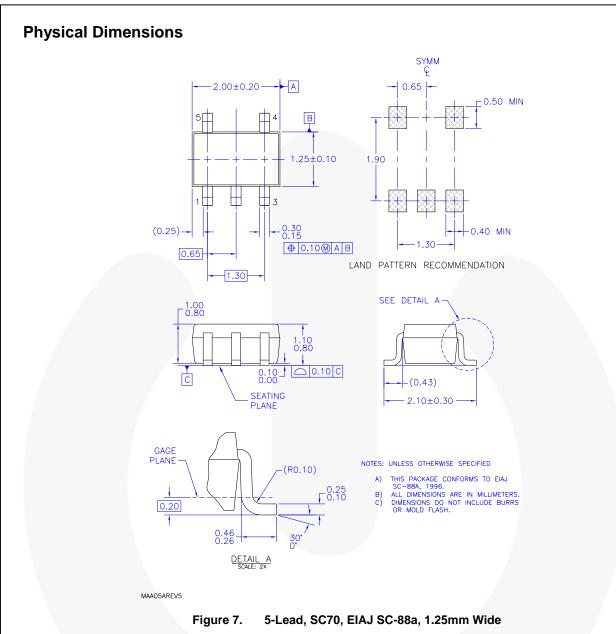
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit	
V _{CC}	Supply Voltage		0.9	3.6	V	
VIN	Input Voltage		0	3.6	V	
Maria		V _{CC} =0V	0	3.6	V	
Vout	Output Voltage	HIGH or LOW State	0	V _{cc}	v	
		V _{CC} =3.0V to 3.6V		±24		
	Output Current in L. //	V _{CC} =2.3V to 3.6V		±18		
1 /1		V _{CC} =1.65V to 1.95V	2	±6	mA	
I _{OH} /I _{OL}	Output Current in I _{OH} /I _{OL}	V _{CC} =1.4V to 1.6V		±4		
		V _{CC} =1.1V to 1.3V		±2		
		V _{CC} =0.9V		±0.1		
TA	Operating Temperature, Free Air		-40	+85	°C	
$\Delta t / \Delta V$	Minimum Input Edge Rate	V _{IN} =0.8V to 2.0, V _{CC} =3.0V		10	ns/V	
		SC70-5		425		
θ_{JA}	Thermal Resistance	MicroPak [™] -6		500	°C/W	
		MicroPak2 [™] -6		560		

Note:

4. Unused inputs must be held HIGH or LOW. They may not float.


			0	Conditions T _A =25°	5°C	5°C T _A =-40		
Symbol	Parameter	V _{cc}	Conditions	Min.	Max.	Min.	Max.	Units
		0.90		.65 x V _{CC}		$.65 \times V_{CC}$		
	HIGH Level Input Voltage	$1.10 \leq V_{CC} \leq 1.30$.65 x V _{CC}		.65 x V _{CC}		
N/		$1.40 \leq V_{CC} \leq 1.60$.65 x V _{CC}		$.65 \times V_{CC}$		v
V _{IH}		$1.65 \leq V_{CC} \leq 1.95$.65 x V _{CC}		$.65 \ x \ V_{CC}$		v
		$2.30 \leq V_{CC} \leq 2.70$		1.6		1.6		
		$2.70 \leq V_{CC} \leq 3.60$		2.0		2.0		
		0.90			$.35 \text{ x V}_{CC}$		$.35 \times V_{CC}$	
	LOW Level Input Voltage	$1.10 \leq V_{CC} \leq 1.30$			$.35 \text{ x V}_{\text{CC}}$		$.35 \times V_{CC}$	
V _{IL}		$1.40 \leq V_{CC} \leq 1.60$			$.35 \text{ x V}_{CC}$		$.35 \times V_{CC}$	v
		$1.65 \leq V_{CC} \leq 1.95$			$.35 \times V_{CC}$		$.35 \times V_{CC}$	v
		$2.30 \leq V_{CC} \leq 2.70$			0.7		0.7	
		$2.70 \leq V_{CC} \leq 3.60$			0.8		0.8	
		0.90	-	V _{CC} -0.1		V _{CC} -0.1		
		$1.10 \leq V_{CC} \leq 1.30$		V _{CC} -0.1		V _{CC} -0.1		
		$1.40 \leq V_{CC} \leq 1.60$	I _{ОН} =-100µА	V _{CC} -0.2		V _{CC} -0.2		
		$1.65 \leq V_{CC} \leq 1.95$	10H=-100µA	V _{CC} -0.2		V _{CC} -0.2		
		$2.30 \leq V_{CC} \leq 2.70$		V _{CC} -0.2		V _{CC} -0.2		
		$2.70 \leq V_{CC} \leq 3.60$		V _{CC} -0.2		V _{CC} -0.2		
		$1.10 \leq V_{CC} \leq 1.30$	I _{OH} =-2mA	.75 x V _{CC}		$.75 \times V_{CC}$		
V _{OH}	HIGH Level Output Voltage	$1.40 \leq V_{CC} \leq 1.60$	I _{OH} =-4mA	.75 x V _{CC}		.75 x V _{CC}		V
	Voltage	$1.65 \leq V_{CC} \leq 1.95$	I _{OH} =-6mA	1.25		1.25		
		$2.30 \leq V_{CC} \leq 2.70$		2.00		2.00		
		$2.30 \leq V_{CC} \leq 2.70$	I _{OH} =-12mA	1.8		1.8		
		$2.70{\leq}~V_{CC}{\leq}~3.60$		2.2		2.2		
		$2.30 \leq V_{CC} \leq 2.70$	I _{OH} =-18mA	1.7		1.7		
		$2.70 \leq V_{CC} \leq 3.60$		2.4		2.4		
		$2.70 \leq V_{CC} \leq 3.60$	I _{OH} =-24mA	2.2	1	2.2		


Continued on following page...

Symbol Devemot	Devenueter	M	Conditions	T _A =25°C		T _A =-40 to 85°C		Unito	
Symbol	ol Parameter V _{CC}		Conditions	Min.	Max.	Min.	Max.	Units	
	$\begin{tabular}{ c c c c c c } \hline & 0.90 & & & \\ \hline & 0.90 & & & \\ \hline & 1.10 \leq V_{CC} \leq 1.30 & & \\ \hline & 1.40 \leq V_{CC} \leq 1.30 & & \\ \hline & 1.65 \leq V_{CC} \leq 1.95 & & \\ \hline & 2.30 \leq V_{CC} \leq 2.70 & & \\ \hline & 2.70 \leq V_{CC} \leq 3.60 & & \\ \hline & 1.10 \leq V_{CC} \leq 1.30 & & & \\ \hline & 1.10 \leq V_{CC} \leq 1.30 & & & & \\ \hline & 1.40 \leq V_{CC} \leq 1.30 & & & & \\ \hline & 1.40 \leq V_{CC} \leq 1.95 & & & & \\ \hline & 1.65 \leq V_{CC} \leq 1.95 & & & & \\ \hline & 1.65 \leq V_{CC} \leq 2.70 & & & & \\ \hline & 1.30 \leq V_{CC} \leq 2.70 & & & & \\ \hline & 1.30 \leq V_{CC} \leq 2.70 & & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & & \\ \hline & 1.40 \leq V_{CC} \leq 2.70 & & \\ \hline & 1.40 \leq V_{CC} \leq 0.70 & & \\ \hline & 1.40 \leq V_{CC} \leq 0.70 & & \\ \hline & 1.40 \leq V_{CC} \leq 0.70 & & \\ \hline & 1.40 \leq V_{CC} \leq 0.70 & & \\ \hline & 1.40 \leq V_{CC} \leq 0.70 & & \\ \hline & 1.40 \leq V_{CC} \leq 0.70 & & \\ \hline & 1.40 \leq V_{CC} \leq 0.70 & & \\ \hline & 1.40 \leq V_{CC} \leq 0.70 & & \\ \hline & 1.40 \leq V_{CC} \leq 0.70 & & \\ \hline & 1.40 \leq V_{CC} \leq 0.70 & & \\ \hline & 1.40 \leq V_{CC} \leq 0.70 & & \\$	0.90			0.1		0.1		
		$1.10 \leq V_{CC} \leq 1.30$			0.1		0.1		
		$1.40 \leq V_{CC} \leq 1.60$	1001		0.2		0.2		
		$1.65 \leq V_{CC} \leq 1.95$	1 _{0L} =100µA		0.2		0.2		
		$2.30 \leq V_{CC} \leq 2.70$			0.2		0.2		
		$2.70 \leq V_{CC} \leq 3.60$			0.2		0.2		
		$1.10 \leq V_{CC} \leq 1.30$	I _{OL} =2mA		0.25 x V _{CC}		0.25 x V _{CC}	V	
V _{OL}		$1.40 \leq V_{CC} \leq 1.60$	I _{OL} =4mA		0.25 x V_{CC}		0.25 x V_{CC}	V	
		$1.65 \leq V_{CC} \leq 1.95$	I _{OL} =6mA		0.3		0.3		
		10		0.4		0.4			
		$2.70 \leq V_{CC} \leq 3.60$	I _{OL} =12mA		0.4		0.4		
		$2.30 {\leq} V_{CC} {\leq} 2.70$	10		0.6		0.6		
		$2.70 \leq V_{CC} \leq 3.60$	I _{OL} =18mA		0.4		0.4		
		$2.70 \leq V_{CC} \leq 3.60$	I _{OL} =24mA		0.55		0.55		
I _{IN}	Input Leakage Current	0.90 to 3.60	$0 \leq V_{IN} \leq 3.60$		±0.1		±0.5	μA	
I _{OFF}	Power Off Leakage Current	0	$0 \leq (V_{IN,}v_O) \leq 3.60$		0.5		0.5	μA	
	Quiescent	0.00 to 2.60	$V_{IN}=V_{CC}$, or GND		0.9		0.9		
Icc	Supply Current	0.90 to 3.60	$V_{CC} \leq V_{IN} \leq 3.6 V$				±0.9	μA	

AC Electrical Characteristics

Sympol	bol Parameter V _{CC}		Conditions		T _A =25°	С	T _A =-40	to 85°C	Unito	Figure
Symbol	Farameter	V CC	Conditions	Min.	Тур.	Max.	Min.	Max.	Units	Figure
		0.90	C_L =15pF, R_L =1M Ω		13					
		$\frac{1.10 \le V_{CC} \le 1.30}{1.40 \le V_{CC} \le 1.60} C$		3.0	6.0	15.8	1.0	18.6		
t _{PHL} , t _{PLH}	Propagation		$C_L=15pF, R_L=2k\Omega$	1.0	3.2	8.7	1.0	9.7	ns	Figure 5
'PHL, 'PLH	^H Delay	$1.65 \leq V_{CC} \leq 1.95$		1.0	2.0	6.0	1.0	6.8	115	Figure 6
		$2.30 \leq V_{CC} \leq 2.70$	$C_L=30pF, R_L=500\Omega$	0.8	1.2	4.1	0.7	4.7		
		$2.70 \leq V_{CC} \leq 3.60$		0.7	1.0	3.3	0.6	4.0		
C _{IN}	Input Capacitance	0			2				pF	5
C _{PD}	Power Dissipation Capacitance	0.90 to 3.60	$V_{IN}=0V$ or V_{CC} , f=10MHz		8				pF	

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

Tape and Reel Specification

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: <u>http://www.fairchildsemi.com/products/analog/pdf/sc70-5_tr.pdf</u>.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

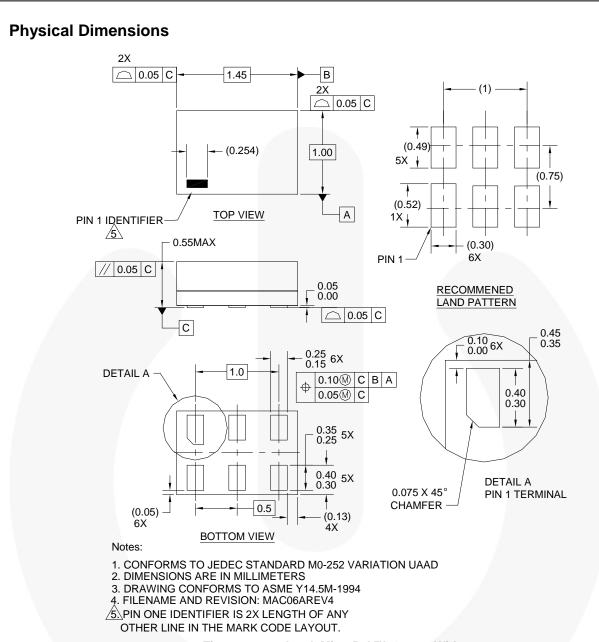


Figure 8. 6-Lead, MicroPak[™], 1.0mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

Tape and Reel Specification

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: <u>http://www.fairchildsemi.com/products/logic/pdf/micropak_tr.pdf</u>.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

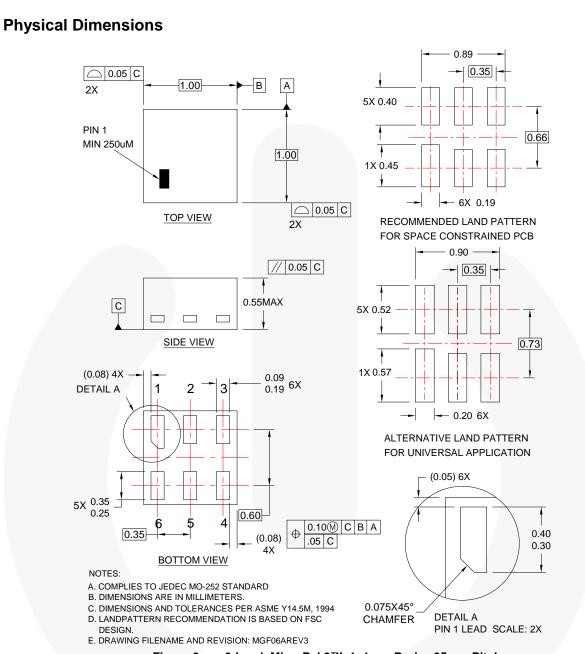
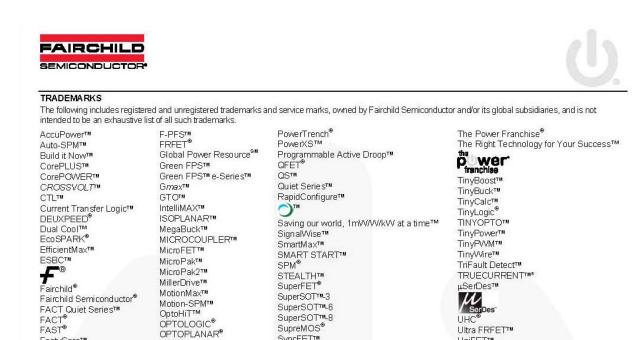


Figure 9. 6-Lead, MicroPak2™, 1x1mm Body, .35mm Pitch


Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

Tape and Reel Specification

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: <u>http://www.fairchildsemi.com/packaging/MicroPAK2_6L_tr.pdf</u>.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
FHX	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

NC7SV32 — TinyLogic[®] ULP-A 2-Input OR Gate

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

PDP SPM™

Power-SPM™

DISCLAIMER

FastvCore™

FETBench™

FlashWriter®*

FPSTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

SyncFET™

Sync-Lock™

SYSTEM GENERAL®*

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- 2 A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

UniFFT™

VisualMax™

VCXTM

XSTM

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
		Datasheet contains preliminary data, supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 151

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC