To

Non-Controlled Copy

CUSTOMER'S PRODUCT NAME	TDK PRODUCT NAME
	MULTILAYER CERAMIC CHIP CAPACITORS
	CGA Series / Automotive Grade
	General (Up to 50V)
	Mid voltage (100 to 630V)

Please return this specification to TDK representatives.
If orders are placed without returned specification, please allow us to judge that specification is accepted by your side.

RECEIPT CONFIRMATION

DATE:
YEAR
MONTH DAY

TDK Corporation
Sales
Electronic Components
Sales \& Marketing Group
Engineering
Electronic Components Business Company
Ceramic Capacitors Business Group

APPROVED	Person in charge

APPROVED	CHECKED	Person in charge

1. SCOPE

This specification is applicable to chip type multilayer ceramic capacitors with a priority over the other relevant specifications.

Production places defined in this specification shall be TDK Corporation Japan,
TDK (Suzhou) Co., Ltd and TDK Components U.S.A. Inc.
EXPLANATORY NOTE:
This specification warrant the quality of the ceramic chip capacitor. The chips should be evaluated or confirmed a state of mounted on your product.
If the use of the chips go beyond the bounds of this specification, we can not afford to guarantee.

2. CODE CONSTRUCTION

(Example)
Catalog Number : CGA4
(Web)
(1)
(2)
$\frac{3}{(3)} \quad \frac{\mathrm{X7R}}{(4)} \quad \frac{1 \mathrm{C}}{(5)}$
(5)

225
K $\quad 125$
A B

CGA4
$\stackrel{\mathrm{J}}{(2)}$
$\underline{3} \quad \mathrm{X7R}$
(4)
(5)
(6)

K
T
(1) Type

Please refer to product list for the dimension of each product.
(2) Thickness

* As for dimension tolerance, please contact with our sales representative.

Thickness	Dimension (mm)
A	0.30
B	0.50
C	0.60
E	0.80
F	0.85
H	1.15
J	1.25
K	1.30
L	1.60
M	2.00
N	2.30
P	2.50
Q	2.80
R	3.20

(3) Voltage condition in the life test
(Max. operating Temp./1000h)

Sign	Condition
1	Rated Voltage $\times 1$
2	Rated Voltage $\times 2$
3	Rated Voltage $\times 1.5$
4	Rated Voltage $\times 1.2$

(4) Temperature Characteristics (Details are shown in table 1 No. 7 at page 4 and No. 8 at page 5)
(5) Rated Voltage

Symbol	Rated Voltage
2 J	DC 630 V
2 W	DC 450 V
2 E	DC 250 V
2 A	DC 100 V
1 H	DC 50 V
1 V	DC 35 V
1 E	DC 25 V
1 C	DC 16 V
1 A	DC 10 V
0 J	DC 6.3 V

(6) Rated Capacitance

Stated in three digits and in units of pico farads (pF).
The first and Second digits identify the first and second significant figures of the capacitance, the third digit identifies the multiplier.
R is designated for a decimal point.

$$
\begin{array}{lcl}
\text { Example } & 2 R 2 \rightarrow 2.2 \mathrm{pF} \\
& 225 \rightarrow 2,200,000 \mathrm{pF}
\end{array}
$$

(7) Capacitance tolerance

Symbol	Tolerance	Capacitance
C	$\pm 0.25 \mathrm{pF}$	10pF and under
D	$\pm 0.5 \mathrm{pF}$	
J	$\pm 5 \%$	Over 10pF
K	$\pm 10 \%$	
M	$\pm 20 \%$	

(8) Thickness code (Only Catalog Number)
(9) Package code (Only Catalog Number)
(10) Special code (Only Catalog Number)
(11) Packaging (Only Item Description)
(Bulk is not applicable for CGA1 and CGA2 type.)

Symbol	Packaging
B	Bulk
T	Taping

(12) Internal code (Only Item Description)
3. RATED CAPACITANCE AND TOLERANCE
3.1 Standard combination of rated capacitance and tolerances

Class	Temperature Characteristics	Capacitance tolerance		Rated capacitance
1	C0G	10pF and under	C ($\pm 0.25 \mathrm{pF})$	1, 1.5, 2, 2.2, 3, 3.3, 4, 4.7, 5
			D ($\pm 0.5 \mathrm{pF})$	$6,6.8,7,8,9,10$
		$\begin{gathered} 12 \mathrm{pF} \text { to } \\ 10,000 \mathrm{pF} \\ \hline \end{gathered}$	$\begin{aligned} & \text { J (} \pm 5 \%) \\ & \mathrm{K}(\pm 10 \%) \\ & \hline \end{aligned}$	$E-12$ series
		$\begin{gathered} \text { Over } \\ 10,000 \mathrm{pF} \end{gathered}$	K (± 10 \%)	$E-6$ series
2	$\begin{aligned} & \mathrm{X} 5 \mathrm{R} \\ & \mathrm{X} 7 \mathrm{R} \\ & \mathrm{X} 7 \mathrm{~S} \end{aligned}$	10uF and under	K (± 10 \%)	$E-6$ series
	X7T	Over 10uF	M (± 20 \%)	

3.2 Capacitance Step in E series

E series	Capacitance Step											
E-6	1.0		1.5		2.2		3.3		4.7		6.8	
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2

4. OPERATING TEMPERATURE RANGE

T.C.	Min. operating Temperature	Max. operating Temperature	Reference Temperature
X5R	$-55^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$
C0G X7R X7S X7T	$-55^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$

5. STORING CONDITION AND TERM

5 to $40^{\circ} \mathrm{C}$ at 20 to 70% RH
6 months Max.
6. P.C. BOARD

When mounting on an aluminum substrate, large case sizes such as CGA6, CGA8 and CGA9 types are more likely to be affected by heat stress from the substrate.
Please inquire separate specification for the large case sizes when mounted on the substrate.
7. INDUSTRIAL WASTE DISPOSAL

Dispose this product as industrial waste in accordance with the Industrial Waste Law.

8. PERFORMANCE

table 1

(continued)

No.	Item	Performance	Test or inspection method
8	Temperature Characteristics of Capacitance (Class2)	Capacitance Change (\%) No voltage applied $\begin{aligned} & \text { X5R : } \pm 15 \\ & \text { X7R : } \pm 15 \\ & \text { X7S : } \pm 22 \\ & \\ & \text { X7T }: \begin{array}{c} +22 \\ -33 \end{array} \end{aligned}$	Capacitance shall be measured by the steps shown in the following table after thermal equilibrium is obtained for each step. $\Delta \mathrm{C}$ be calculated ref. STEP3 reading Measuring voltage : $0.1,0.2,0.5,1.0 \mathrm{Vrms}$. For information which product has which Measuring voltage, please contact with our sales representative.
9	Robustness of Terminations	No sign of termination coming off, breakage of ceramic, or other abnormal signs.	Reflow solder the capacitors on a P.C.Board shown in Appendix 1a or Appendix 1b and apply a pushing force of 17.7 N with $10 \pm 1 \mathrm{~s}$. (2N is applied for CGA1, CGA2 type)
10	Bending	No mechanical damage.	Reflow solder the capacitors on a P.C.Board shown in Appendix 2a or Appendix 2 b and bend it for 2 mm . (1mm is applied for 0.85 mm thickness of Class2 items.) (Unit : mm)

No.	Item		Performance			Test or inspection method				
13	Vibration	External appearance Capacitance	No mechanical damage.			Reflow solder the capacitors on a P.C.Board shown in Appendix1 before testing. Vibrate the capacitor with following conditions. Applied force: 5G max. Frequency: 10-2000Hz Duration : 20 min . Cycle : 12 cycles in each 3 mutually perpendicular directions.				
			Characteristics		Change from the value before test Capacitance drift within $\pm 2.5 \%$ or $\pm 0.25 \mathrm{pF}$, whichever larger.					
			Class1	COG						
			Class2	$\begin{aligned} & \hline \text { X5R } \\ & \text { X7R } \\ & \text { X7S } \\ & \text { X7T } \\ & \hline \end{aligned}$	± 7.5 \%					
		$\begin{aligned} & \mathrm{Q} \\ & \text { (Class1) } \end{aligned}$	Capac 30 pF Under $\mathrm{C}:$ Rate	ance	Q $1,000 \mathrm{~min}$. $400+20 \times \mathrm{C} \mathrm{min}$. citance (pF)					
		D.F. (Class2)	Meet the initial spec.							
14	Temperature cycle	External appearance	No mechanical damage.			Reflow solder the capacitors on a P.C.Board shown in Appendix 1a or Appendix 1b before testing. Expose the capacitors in the condition step1 through step 4 and repeat 1,000 times consecutively. Leave the capacitors in ambient condition for 6 to 24 h (Class 1) or $24 \pm 2 \mathrm{~h}$ (Class 2) before measurement.				
		Capacitance	Characteristics		Change from the value before test					
			Class1	$\begin{gathered} C O G \\ \hline \times 5 R \end{gathered}$	$\begin{aligned} & \text { Capacitance drift } \\ & \text { within } \pm 2.5 \% \\ & \pm 0.25 \mathrm{FF}, \\ & \text { whichever larger. } \end{aligned}$					
			Class2		$\pm 7.5 \%$	Step	Temperature (${ }^{\circ} \mathrm{C}$)	Time (min.)		
		$\begin{aligned} & \mathrm{Q} \\ & \text { (Class1) } \end{aligned}$	Capacitance			1	Min. operating temp. ± 3	30 ± 3		
			Capacitance		Q	2	Reference Temp. ± 2	2-5		
			30pF and over		1,000 min.					
			Under 30pF		$400+20 \times \mathrm{C} \mathrm{min}$.	3	Max. operating temp. ± 2	30 ± 2		
			C : Rated capacitance (pF)			4	Reference Temp. ± 2	2-5		
		D.F. (Class2)	Meet the initial spec.							
		Insulation Resistance	Meet the initial spec.							
		Voltage proof	No insulation breakdown or other damage.							

(continued)

No.	Item			Perfor	rmance	Test or inspection method
15	Moisture Resistance (Steady State)	External appearance	No mechanical damage.			Reflow solder the capacitors on a P.C.Board shown in Appendix 1a or Appendix 1b before testing. Leave at temperature $40 \pm 2^{\circ} \mathrm{C}, 90$ to 95% RH for $500+24,0 h$. Leave the capacitors in ambient condition for 6 to 24 h (Class1) or $24 \pm 2 \mathrm{~h}$ (Class2) before measurement.
		Capacitance	Characteristics		Change from the value before test	
			Class1	COG	Capacitance drift within $\pm 7.5 \%$ or $\pm 0.75 \mathrm{pF}$, whichever larger.	
			Class2	X5R X7R X7S X7T	± 12.5 \%	
		$\begin{aligned} & \mathrm{Q} \\ & \text { (Class1) } \end{aligned}$	Capacitance		Q	
			10pF and over under 30pF		$275+5 / 2 \times$ C min .	
			Under 10pF		C : Rated capacitance (pF)	
		$\begin{aligned} & \text { D.F. } \\ & \text { (Class2) } \end{aligned}$	Characteristics 200\% of initial spec. max.			
		Insulation Resistance	$1,000 \mathrm{M} \Omega$ or $50 \mathrm{M} \Omega \cdot \mu \mathrm{F}$ min. (As for the capacitors of rated voltage 16V DC and item below, $1,000 \mathrm{M} \Omega$ or $10 \mathrm{M} \Omega \cdot \mu \mathrm{F}$ min.,) whichever smaller.			
16	Moisture Resistance	External appearance	No mechanical damage.			Reflow solder the capacitors on a P.C.Board shown in Appendix 1a or Appendix 1b before testing. Apply the rated voltage at temperature $85^{\circ} \mathrm{C}$ and $85 \% \mathrm{RH}$ for $1000+24,0 \mathrm{~h}$. Charge/discharge current shall not exceed 50mA. Leave the capacitors in ambient condition for 6 to 24 h (Class1) or $24 \pm 2 \mathrm{~h}$ (Class2) before measurement. Voltage conditioning (only for class 2) Voltage treat the capacitors under testing temperature and voltage for 1 hour. Leave the capacitors in ambient condition for $24 \pm 2 h$ before measurement. Use this measurement for initial value.
		Capacitance	Charac	ristics	Change from the value before test	
			Class1	COG	Capacitance drift within $\pm 7.5 \%$ or $\pm 0.75 \mathrm{pF}$, whichever larger.	
			Class2	X5R X7R X7S X7T	$\pm 12.5 \%$	
		Q (Class1)	Capac	ance	Q	
			30pF a	d over	200 and over	
			Under	30pF	$100+10 / 3 \times \mathrm{C}$ min.	
			C : Rate	capa	citance (pF)	
		D.F. (Class2)	$\begin{gathered} \hline \text { Characte } \\ 200 \% \text { o } \end{gathered}$	stics initial	spec. max.	
		Insulation Resistance	$500 \mathrm{M} \Omega$ or $25 \mathrm{M} \Omega \cdot \mu \mathrm{F}$ min. (As for the capacitors of rated voltage 16V DC and item below, $500 \mathrm{M} \Omega$ or $5 \mathrm{M} \Omega \cdot \mu \mathrm{F}$ min.,) whichever smaller.			

(continued)

*As for the initial measurement of capacitors (Class2) on number 8,12,13,14 and 15 leave capacitors at $150-10,0^{\circ} \mathrm{C}$ for 1 hour and measure the value after leaving capacitors for $24 \pm 2 \mathrm{~h}$ in ambient condition.

(Unit : mm)

Material : Glass Epoxy (As per JIS C6484 GE4)

P.C. Board thickness : Appendix-2a	0.8 mm
Appendix-1a, 1b, 2b	1.6 mm

TDK (EIA style)	Dimensions (mm)		
	a	b	c
CGA1(CC0201)	0.3	0.8	0.3
CGA2(CC0402)	0.4	1.5	0.5
CGA3(CC0603)	1.0	3.0	1.2
CGA4(CC0805)	1.2	4.0	1.65
CGA5(CC1206)	2.2	5.0	2.0
CGA6(CC1210)	2.2	5.0	2.9
CGA8(CC1812)	3.5	7.0	3.7
CGA9(CC2220)	4.5	8.0	5.6

9. INSIDE STRUCTURE AND MATERIAL

No.	NAME	MATERIAL	
		Class1	Class2
1	Dielectric	CaZrO_{3}	BaTiO_{3}
2	Electrode	Nickel (Ni)	
3	Termination	Copper (Cu)	
4		Nickel (Ni)	
5		Tin (Sn)	

10. RECOMMENDATION

As for CGA6(CC1210), CGA8(CC1812) and CGA9(CC2220) types, It is recommended to provide a slit (about 1 mm wide) in the board under the components to improve washing Flux. And please make sure to dry detergent up completely before.

11. SOLDERING CONDITION

As for CGA1(CC0201), CGA2(CC0402), CGA6(CC1210), CGA8(CC1812) and CGA9(CC2220) types, reflow soldering only.

No.	Process
1	Operating Condition (Storage, Transportation)
2	Circuit desjgn $!!$ Caution

1-1. Storage

1) The capacitors must be stored in an ambient temperature of 5 to $40^{\circ} \mathrm{C}$ with a relative humidity of 20 to $70 \% \mathrm{RH}$. The products should be used within 6 months upon receipt.
2) The capacitors must be operated and stored in an environment free of dew condensation and these gases such as Hydrogen Sulphide, Hydrogen Sulphate, Chlorine, Ammonia and sulfur.
3) Avoid storing in sun light and falling of dew.
4) Do not use capacitors under high humidity and high and low atmospheric pressure which may affect capacitors reliability.
5) Capacitors should be tested for the solderability when they are stored for long time.
1-2. Handling in transportation In case of the transportation of the capacitors, the performance of the capacitors
may be deteriorated depending on the transportation condition.
(Refer to JEITA RCR-2335C 9.2 Handling in transportation)
2-1. Operating temperature
Operating temperature should be followed strictly within this specification, especially be careful with maximum temperature.
6) Do not use capacitors above the maximum allowable operating temperature.
7) Surface temperature including self heating should be below maximum operating temperature.
(Due to dielectric loss, capacitors will heat itself when AC is applied. Especially at high frequencies around its SRF, the heat might be so extreme that it may damage itself or the product mounted on. Please design the circuit so that the maximum temperature of the capacitors including the self heating to be below the maximum allowable operating temperature. Temperature rise at capacitor surface shall be below $20^{\circ} \mathrm{C}$)
8) The electrical characteristics of the capacitors will vary depending on the temperature. The capacitors should be selected and designed in taking the temperature into consideration.
2-2 Operating voltage
9) Operating voltage across the terminals should be below the rated voltage. When AC and DC are super imposed, $\mathrm{V}_{0-\mathrm{p}}$ must be below the rated voltage.
(1) and (2)
$A C$ or pulse with overshooting, $V_{\text {P-p }}$ must be below the rated voltage.
When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use the capacitors within rated voltage containing these Irregular voltage.

Voltage	(1) DC voltage		(2) DC+AC voltage		(3) AC voltage
$\begin{array}{c}\text { Positional } \\ \text { Measurement } \\ \text { (Rated voltage) }\end{array}$	$V_{0-\mathrm{P}}$				

Voltage	(4) Pulse voltage (A)		(5) Pulse voltage (B)	
Positional Measurement (Rated voltage)				

No.	Process	Condition		
3	Designing P.C.board	4) Recommended chip capacitor layout is as following.		
			Disadvantage against bending stress	Advantage against bending stress
		Mounting face	Perforation or slit Break P.C.board with mounted side up.	Perforation or slit Break P.C.board with mounted side down.
		Chip arrangement (Direction)	Mount perpendicularly to perforation or slit	Mount in parallel with perforation or slit
		Distance from slit	Closer to slit is higher stress $(\square<\square)$	Away from slit is less stress $(\square<\square)$

| No. | Process | 4-1. Stress from mounting head
 If the mounting head is adjusted too low, it may induce excessive stress in
 the chip capacitor to result in cracking. Please take following precautions.
 1) Adjust the bottom dead center of the mounting head to reach on the P.C.board
 surface and not press it.
 2) Adjust the mounting head pressure to be 1 to 3N of static weight.
 3) To minimize the impact energy from mounting head, it is important to provide
 support from the bottom side of the P.C.board.
 See following examples.
 Single
 sided
 mounting | |
| :---: | :---: | :---: | :---: | :---: |

When the centering jaw is worn out, it may give mechanical impact on the capacitors to cause crack. Please control the close up dimension of the centering jaw and provide sufficient preventive maintenance and replacement of it.

4-2. Amount of adhesive

Example : CGA4 (CC0805), CGA5 (CC1206)

a	0.2 mm min.
b	$70-100 \mu \mathrm{~m}$
c	Do not touch the solder land

No.	Process	Condition			
5	Soldering	5-4. Avoiding thermal shock 1) Preheating condition			
		Soldering		Type	Temp. $\left({ }^{\circ} \mathrm{C}\right)$
		Wave soldering	$\begin{aligned} & \text { CGA3(CC } \\ & \text { CGA5(CC } \end{aligned}$	3), CGA4(CC0805), 6)	$\Delta \mathrm{T} \leq 150$
		Reflow soldering	CGA1(CC0201), CGA2(CC0402), CGA3(CC0603), CGA4(CC0805), CGA5(CC1206)		$\Delta \mathrm{T} \leq 150$
			$\begin{aligned} & \text { CGA6(CC1210), CGA8(CC1812), } \\ & \text { CCGA9(CC2220) } \end{aligned}$		$\Delta T \leq 130$
		Manual soldering	CGA1(CC0201), CGA2(CC0402), CGA3(CC0603), CGA4(CC0805), CGA5(CC1206)		$\Delta \mathrm{T} \leq 150$
			$\begin{aligned} & \text { CGA6(CC1210), CGA8(CC1812), } \\ & \text { CGA9(CC2220) } \end{aligned}$		$\Delta \mathrm{T} \leq 130$
		2) Cooling condition Natural cooling using air is recommended. If the chips are dipped into a solvent for cleaning, the temperature difference $(\Delta \mathrm{T})$ must be less than $100^{\circ} \mathrm{C}$.			
		5-5. Amount of solder Excessive solder will induce higher tensile force in chip capacitors when temperature changes and it may result in chip cracking. In sufficient solder may detach the capacitors from the P.C.board.			
		Excessive solder		Higher te capacito	Higher tensile force in chip capacitor to cause crack
		Low robustness may cause contact failure or chip capacitor comes off the P.C.board.			
		5-6. Solder repair by solder 1) Selection of the soldering Tip temperature of solde size. The higher the tip t may cause a crack in the Please make sure the tip accordance with following capacitors with the cond Recommended solder	n iron tip iron varies by mperature, th chip capacito temp. before recommend on in 5-4 to n condition	type, P.C.board mate uicker the operation. lering and keep the peak ondition. (Please preh the thermal shock.) Pb Solder and Lead	and solder land wever, heat shock temp and time in the chip Solder)
		Type	Temp. (${ }^{\circ} \mathrm{C}$)	Wattage (W) Shar	e (mm)
		CGA1(CCO201) CGA2(CCO402) CGA3(CC0603) CGA4(CC0805) CGA5(CC1206)	350 max.	20 max.	¢ 3.0 max.
		CGA6(CC1210) CGA8(CC1812) CGA9(CC2220)	280 max.		

No.	Process	Condition
5	Soldering	3) Amount of solder should be suitable to from a proper fillet shape. Excess solder causes mechanical and thermal stress on a capacitor and results in cracks. Insufficient solder causes weak adherence of the capacitor to the substrate and may result in detachment of a capacitor and deteriorate reliability of the printed wiring board. See the example of appropriate solder fillet shape for 5-5.Amount of solder. 5-8. Sn-Zn solder $\mathrm{Sn}-\mathrm{Zn}$ solder affects product reliability. Please contact TDK in advance when utilize $\mathrm{Sn}-\mathrm{Zn}$ solder. 5-9. Countermeasure for tombstone The misalignment between the mounted positions of the capacitors and the land patterns should be minimized. The tombstone phenomenon may occur especially the capacitors are mounted (in longitudinal direction) in the same direction of the reflow soldering. (Refer to JEITA RCR-2335C Annex A (Informative) Recommendations to prevent the tombstone phenomenon)
6	Cleaning	1) If an unsuitable cleaning fluid is used, flux residue or some foreign articles may stick to chip capacitors surface to deteriorate especially the insulation resistance. 2) If cleaning condition is not suitable, it may damage the chip capacitors. 2)-1. Insufficient washing (1) Terminal electrodes may corrode by Halogen in the flux. (2) Halogen in the flux may adhere on the surface of capacitors, and lower the insulation resistance. (3) Water soluble flux has higher tendency to have above mentioned problems (1) and (2). 2)-2. Excessive washing When ultrasonic cleaning is used, excessively high ultrasonic energy output can affect the connection between the ceramic chip capacitor's body and the terminal electrode. To avoid this, following is the recommended condition. Power: 20W/ \square max. Frequency: 40kHz max. Washing time : 5 minutes max. 2)-3. If the cleaning fluid is contaminated, density of Halogen increases, and it may bring the same result as insufficient cleaning.

| No. | Process | |
| :---: | :--- | :--- | :--- | :--- |
| Coating and | | |
| molding of the | | |
| P.C. board | | |\quad 2) When the P.C. board is coated, please verify the quality influence on the product.

3) When functional check of the P.C.board is performed, check pin pressure tends to be adjusted higher for fear of loose contact. But if the pressure is excessive and bend the P.C.board, it may crack the chip capacitors or peel the terminations off. Please adjust the check pins not to bend the P.C.board.

Item	Not recommended	Recommended
Termination Board bending		

No.	Process	Handling of loose chip capacitors 1f dropped the chip capacitors may crack. Once dropped do not use it. Especially, the large case sized chip capacitors are tendency to have cracks easily, so please handle with care.
9	2) Piling the P.C.board after mounting for storage or handling, the corner of the P.C. board may hit the chip capacitors of another board to cause crack.	
10	Capacitance aging	The capacitors (Class 2) have aging in the capacitance. They may not be used in precision time constant circuit. In case of the time constant circuit, the evaluation should be done well.
11		

No.	Process	Condition
12	Caution during operation of equipment	1) A capacitor shall not be touched directly with bare hands during operation in order to avoid electric shock. Electric energy held by the capacitor may be discharged through the human body when touched with a bare hand. Even when the equipment is off, a capacitor may stay charged. The capacitor should be handled after being completely discharged using a resistor. 2) The terminals of a capacitor shall not be short-circuited by any accidental contact with a conductive object. A capacitor shall not be exposed to a conductive liquid such as an acid or alkali solution. A conductive object or liquid, such as acid and alkali, between the terminals may lead to the breakdown of a capacitor due to short circuit 3) Confirm that the environment to which the equipment will be exposed during transportation and operation meets the specified conditions. Do not to use the equipment in the following environments. (1) Environment where a capacitor is spattered with water or oil (2) Environment where a capacitor is exposed to direct sunlight (3) Environment where a capacitor is exposed to Ozone, ultraviolet rays or radiation (4) Environment where a capacitor exposed to corrosive gas(e.g. hydrogen sulfide, sulfur dioxide, chlorine. ammonia gas etc.) (5) Environment where a capacitor exposed to vibration or mechanical shock exceeding the specified limits. (6) Atmosphere change with causes condensation
13	\pm Others	The products listed on this specification sheet are intended for use in general electronic equipment (AV equipment, telecommunications equipment, home appliances, amusement equipment, computer equipment, personal equipment, office equipment, measurement equipment, industrial robots) under a normal operation and use condition. The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require a more stringent level of safety or reliability, or whose failure, malfunction or trouble could cause serious damage to society, person or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below or for any other use exceeding the range or conditions set forth in this specification sheet. If you intend to use the products in the applications listed below or if you have special requirements exceeding the range or conditions set forth in this specification, please contact us. (1) Aerospace/Aviation equipment (2) Transportation equipment (electric trains, ships, etc.) (3) Medical equipment (Excepting Pharmaceutical Affairs Law classification Class1, 2) (4) Power-generation control equipment (5) Atomic energy-related equipment (6) Seabed equipment (7) Transportation control equipment (8) Public information-processing equipment (9) Military equipment (10) Electric heating apparatus, burning equipment (11) Disaster prevention/crime prevention equipment (12) Safety equipment (13) Other applications that are not considered general-purpose applications When designing your equipment even for general-purpose applications, you are kindly requested to take into consideration securing protection circuit/device or providing backup circuits in your equipment.

13. PACKAGING LABEL

Packaging shall be done to protect the components from the damage during transportation and storing, and a label which has the following information shall be attached.

1) Inspection No.
2) $T D K P / N$
3) Customer's P / N
4) Quantity
*Composition of Inspection No.
Example $\underline{\underline{2}} \underline{\underline{A}-\underline{O O}-\underline{\mathrm{OOO}}}$
(a) (b) (c)
(d)
(e)
a) Line code
b) Last digit of the year
c) Month and A for January and B for February and so on. (Skip I)
d) Inspection Date of the month.
e) Serial No. of the day

14. BULK PACKAGING QUANTITY

Total number of components in a plastic bag for bulk packaging : 1,000pcs. As for CGA1, CGA2 types, not available for bulk packaging.

15. TAPE PACKAGING SPECIFICATION

1. CONSTRUCTION AND DIMENSION OF TAPING

1-1. Dimensions of carrier tape
Dimensions of paper tape shall be according to Appendix 3, 4, 5.
Dimensions of plastic tape shall be according to Appendix 6, 7.
1-2. Bulk part and leader of taping

1-3. Dimensions of reel
Dimensions of $\varnothing 178$ reel shall be according to Appendix 8, 9 .
Dimensions of $\varnothing 330$ reel shall be according to Appendix 10, 11.
1-4. Structure of taping

2. CHIP QUANTITY

Type	Thickness of chip	Taping Material	Chip quantity(pcs.)	
			$\varnothing 178 \mathrm{~mm}$ reel	Ø 330mm reel
CGA1(CC0201)	0.30 mm	Paper	15,000	-
CGA2(CC0402)	0.50 mm	Paper	10,000	50,000
CGA3(CC0603)	0.80 mm	Paper/ Plastic	4,000	10,000
CGA4(CC0805)	0.60 mm	Paper	4,000	20,000
	0.85 mm	Paper		10,000
	1.25 mm	Plastic	2,000	
CGA5(CC1206)	0.60 mm	Paper	4,000	10,000
	1.15 mm	Plastic	2,000	
	1.30 mm			
	1.60 mm			8,000
CGA6(CC1210)	1.25 mm	Plastic	2,000	8,000
	2.00 mm		1,000	5,000
	2.30 mm			
	2.50 mm			
CGA8(CC1812)	1.60 mm	Plastic	1,000	3,000
	2.30 mm		500	
	2.50 mm			
	2.80 mm			2,000
CGA9(CC2220)	1.60 mm	Plastic	1,000	3,000
	2.00 mm		500	
	2.30 mm			
	2.50 mm			

3. PERFORMANCE SPECIFICATIONS

3-1. Fixing peeling strength (top tape)

$0.05-0.7 \mathrm{~N}$. (See the following figure.)

TYPE 1 (Paper)

TYPE 2 (Plastic)

Direction of pulling

3-2. Carrier tape shall be flexible enough to be wound around a minimum radius of 30 mm with components in tape.

3-3. The missing of components shall be less than 0.1%

3-4. Components shall not stick to fixing tape.

3-5. The fixing tapes shall not protrude beyond the edges of the carrier tape not shall cover the sprocket holes.

Appendix 3

Paper Tape

(Unit : mm)

Sype	A	B	C	D	E	F
CGA1 $(C C 0201) ~$	(0.38)	(0.68)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	2.00 ± 0.05

\(\left.$$
\begin{array}{c|c|c|c|c|c}\hline \begin{array}{c}\text { Sype }\end{array} & \mathrm{G} & \mathrm{H} & \mathrm{J} & \mathrm{t} & \mathrm{T} \\
\hline \begin{array}{c}\text { CGA1 } \\
(\text { CC0201 })\end{array}
$$ \& 2.00 \pm 0.05 \& 4.00 \pm 0.05 \& \varnothing 1.5^{+0.10}

0\end{array}\right) 0.35 \pm 0.02\)| 0.40 min. |
| :---: |

* The values in the parentheses () are for reference.

Appendix 4

Paper Tape

Type	Symbol	B	C	D
CGA2 $($ CC0402 $)$	(0.65)	(1.15)	8.00 ± 0.30	3.50 ± 0.05
Type	G	H	J	T
CGA2 $($ CC0402 $)$	2.00 ± 0.05	4.00 ± 0.10	$\varnothing 1.5^{+0.10}$	
0				

* The values in the parentheses () are for reference

Appendix 5

Paper Tape

(Unit : mm)

Type ${ }^{\text {Symbol }}$	A	B	C	D	E	F
$\begin{gathered} \text { CGA3 } \\ (\mathrm{CCO603}) \end{gathered}$	(1.10)	(1.90)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10
$\begin{gathered} \text { CGA4 } \\ (\mathrm{CC0805}) \\ \hline \end{gathered}$	(1.50)	(2.30)				
$\begin{gathered} \text { CGA5 } \\ \text { (CC1206) } \end{gathered}$	(1.90)	(3.50)				
Symbol Type	G	H	J	T		
$\begin{gathered} \text { CGA3 } \\ (\mathrm{CC0603}) \\ \hline \end{gathered}$	2.00 ± 0.05	4.00 ± 0.10	$\varnothing 1.5{ }^{+0.10}$	1.20 max.		
$\begin{gathered} \text { CGA4 } \\ (\mathrm{CC0805}) \end{gathered}$						
$\begin{gathered} \text { CGA5 } \\ \text { (CC1206) } \end{gathered}$						

* The values in the parentheses () are for reference.

Appendix 6

Plastic Tape

(Unit : mm)

Symbol Type	A	B	C	D	E	F
$\begin{gathered} \text { CGA3 } \\ (\mathrm{CCO603}) \end{gathered}$	(1.10)	(1.90)	$\begin{gathered} 8.00 \pm 0.30 \\ {[12.0 \pm 0.30]} \end{gathered}$	$\begin{aligned} & 3.50 \pm 0.05 \\ & {[5.50 \pm 0.05]} \end{aligned}$	1.75 ± 0.10	4.00 ± 0.10
$\begin{gathered} \text { CGA4 } \\ (\mathrm{CC0805}) \end{gathered}$	(1.50)	(2.30)				
$\begin{gathered} \text { CGA5 } \\ \text { (CC1206) } \end{gathered}$	(1.90)	(3.50)				
$\begin{gathered} \text { CGA6 } \\ (\mathrm{CC} 1210) \end{gathered}$	(2.90)	(3.60)				
Symbol Type	G	H	J	K	t	Q
$\begin{gathered} \text { CGA3 } \\ (\mathrm{CCO603}) \end{gathered}$	2.00 ± 0.05	4.00 ± 0.10	$\varnothing 1.5{ }_{0}^{+0.10}$	1.50 max.	0.30 max.	$\varnothing 0.50 \mathrm{~min}$.
$\begin{gathered} \text { CGA4 } \\ (\mathrm{CC0805}) \end{gathered}$				2.50 max.		
$\begin{gathered} \text { CGA5 } \\ \text { (CC1206) } \end{gathered}$				2.50 max.		
$\begin{gathered} \text { CGA6 } \\ (\mathrm{CC1210}) \end{gathered}$				3.20 max.	0.60 max.	

* The values in the parentheses () are for reference.
*As for 2.5 mm thickness products, apply values in the brackets [].

Appendix 7

Plastic Tape

(Unit : mm)

Symbol Type	A	B	C	D	E	F
$\begin{gathered} \text { CGA8 } \\ (\mathrm{CC1812}) \\ \hline \end{gathered}$	(3.60)	(4.90)	12.0 ± 0.30	5.50 ± 0.05	1.75 ± 0.10	8.00 ± 0.10
$\begin{gathered} \text { CGA9 } \\ (\mathrm{CC} 2220) \end{gathered}$	(5.40)	(6.10)				
Symbol Type	G	H	J	K	t	Q
$\begin{gathered} \text { CGA8 } \\ (\mathrm{CC1812}) \end{gathered}$	2.00 ± 0.05	4.00 ± 0.10	$\varnothing 1.5{ }_{0}^{+0.10}$	6.50 max.	0.60 max.	$\varnothing 1.50$ min.
$\begin{gathered} \text { CGA9 } \\ (\mathrm{CC} 2220) \end{gathered}$						

* The values in the parentheses () are for reference.

Appendix 8

CGA1, CGA2, CGA3, CGA4, CGA5, CGA6 (As for CGA6 type, any thickness of the item except 2.5 mm)

(Unit : mm)

Symbol	A	B	C	D	E	W_{1}
Dimension	$\varnothing 178 \pm 2.0$	$\varnothing 60 \pm 2.0$	$\varnothing 13 \pm 0.5$	$\varnothing 21 \pm 0.8$	2.0 ± 0.5	9.0 ± 0.3

Symbol	W_{2}	r
Dimension	13.0 ± 1.4	1.0

Appendix 9

CGA6 (Applied to 2.5 mm thickness products), CGA8, CGA9

(Unit : mm)

Symbol	A	B	C	D	E	W_{1}
Dimension	$\varnothing 178 \pm 2.0$	$\varnothing 60 \pm 2.0$	$\varnothing 13 \pm 0.5$	$\varnothing 21 \pm 0.8$	2.0 ± 0.5	13.0 ± 0.3

Symbol	W_{2}	r
Dimension	17.0 ± 1.4	1.0

(Unit : mm)

Symbol	A	B	C	D	E	W
Dimension	Ø382 max. $\left(\begin{array}{c}\text { Nominal } \\ \varnothing 330)\end{array}\right.$	$\varnothing 50 \mathrm{~min}$.	$\varnothing 13 \pm 0.5$	$\varnothing 21 \pm 0.8$	2.0 ± 0.5	10.0 ± 1.5

Symbol	t	r
Dimension	2.0 ± 0.5	1.0

Appendix 11

CGA6 (Applied to 2.5 mm thickness products), CGA8, CGA9 (Material : Polystyrene)

