

32-bit
Microcontrollers

Application Note

AVR32003: AVR32 AP7 Linux Buildroot

Features
• Integrated build scripts for:

- Toolchain
- Linux® kernel

- Boot loader
- Libraries
- Applications

 • Configurable and optimized.
• Easy adoptable to custom boards. • Simple steps to integrate custom libraries and applications.

Rev. 32062E-AVR32-11/08

• Generates a fully working file system ready for deployment.

1 Introduction
Buildroot is a set of scripts that builds an entire root file system for a given target. A
target can be ATNGW100 or ATSTK1000.

The scripts are based on a combination of Makefile and kconfig that is commonly
used in many projects. Kconfig is used to give the user an easy configuration
interface that is stored in a file. The Makefile system then reads out the values
stored by kconfig and configures a set of rules in which different software is
compiled.

Buildroot start by compiling the toolchain if requested, or it can use an external
toolchain. It then moves over to the Linux kernel, software libraries and
applications. Finally it combines all the applications with the needed libraries and
kernel to a file system image. This image is ready for the user to deploy on his
target.

2 AVR32003
32062E-AVR32-11/08

2 Requirements
Buildroot is a script system that heavily depends on a Linux system. It is highly
recommended that users either run a native Linux installation or run Linux within a
virtual machine when running other operating systems.

Buildroot is supported by most host architecture and requires quite a lot of disk space.
Having 5 GB free disk space before starting to work on you root file system is in
general a good idea.

The build system also needs a set of host tools preinstalled on the build machine.
Most Linux distributions allow the user to install a package covering the build
essentials.

List of requirements for the build machine:

• C compiler (GCC)
• C++ compiler (for Qtopia® (G++))
• GNU make
• sed
• flex
• bison
• patch
• gettext
• libtool
• texinfo
• autoconf (version 2.13 and 2.61)
• automake
• ncurses library (development install)
• zlib library (development install)
• libacl library (development install)
• lzo2 library (development install)

 AVR32003

 3

32062E-AVR32-11/08

2.1 Using a proxy when downloading
Some networks are connected to the Internet through a proxy. Buildroot has no
means to detect your proxy settings, but you can tell your shell how your HTTP and
FTP proxy works. Buildroot will then use this information when downloading the
source code for various applications from the Internet.

To set HTTP proxy type the following in the shell you later will use for Buildroot:

export http_proxy=”http://<username>:<password>@<proxy URL>:<port>/

Example:

export http_proxy=”http://avr32:password@proxy.example.net:3128/

To set FTP proxy type the following in the shell you later will use for Buildroot:

export ftp_proxy=”ftp://<username>:<password>@<proxy URL>:<port>/

Example:

export ftp_proxy=”ftp://avr32:password@proxy.example.net:3128/

3 Getting started for AVR32 targets
This short getting started guide is intended for ATNGW100 and ATSTK1000 users.

Start off by downloading the latest release from Atmel®, extract it somewhere on you
system and enter the buildroot-avr32-<version> directory.

To load the default configuration for these boards, simply type on of the following
depending on your board:

make atstk1002_defconfig

make atstk1005_defconfig

make atstk1006_defconfig

make atngw100_defconfig

make atngw100-base_defconfig

make evklcd100_defconfig

make evklcd101_defconfig

Buildroot will now load the board’s configuration and save it in a file called .config.

An optional step is to download all the source files before starting the build. This can
be initiated by typing:

make source

The next step for the user is to start the build process. This is done by typing:

make

Buildroot will now start to download software packages from the Internet, extract them
on your local file system and compile them for AVR®32.

When the build process is finished and successful, you will find the created root file
systems in the binaries/<board name>/ directory. There can be various types of ready
binaries depending on what is chosen by the configuration system.

4 AVR32003
32062E-AVR32-11/08

4 Directory structure
Buildroot has a well defined structure of directories. From a fresh extraction of the
tarball, Buildroot will look like:

• Config.in
• .defconfig
• docs/
• Makefile
• package/
• project/
• target/
• TODO
• toolchain/

After a successful build there will be 6 extra directories in the base directory of
Buildroot:

• binaries/
• build_avr32/
• dl/
• include/
• project_build_avr32/
• toolchain_build_avr32/

4.1.1 binaries/

This directory contains the successfully built images. Populated on the form
binaries/<project name>/.

4.1.2 build_avr32/

Directory used for building each library and application. Also, by default, holds the
staging_dir/ directory which contain the toolchain and libraries.

4.1.3 .config

File which contains the system configuration, this will appear after the first time
running menuconfig or loading a default configuration.

4.1.4 Config.in

The top level configurations file for the kconfig system.

4.1.5 .defconfig

File with a default general configuration for Buildroot, mainly for x86 architecture.

4.1.6 dl/

This directory will contain all the downloaded source tar archives so the user only has
to download libraries and applications once.

 AVR32003

 5

32062E-AVR32-11/08

4.1.7 docs/

In this directory the documentation for Buildroot can be found.

4.1.8 include/

Directory made by kconfig, used for knowing which values are stored during
configuration setup. Leave it as is, everything is auto generated.

4.1.9 Makefile

Top level makefile for Buildroot describing the initial rules for how to build a root file
system. This file will again include all the other makefiles spread out in the sub
directories.

4.1.10 package/

Directory containing all the makefiles that describes how each library and application
shall be built.

4.1.11 project/

Directory containing information about project building that allows Buildroot to be able
to have multiple projects ongoing in the same extracted source tree. Buildroot will
share compiled applications, libraries and toolchain whenever possible.

4.1.12 project_build_avr32/

The project specific part of the build is located in this directory. Is populated on the
form project_build_avr32/<project name>/. Here you will find the target specific Linux
kernel; Busybox and uncompressed root file system.

4.1.13 target/

Directory containing information about targets that is where the different boards are
defined, board specific patches to the Linux kernel and board specific files. Typically
this is where the base for the file system is located, called target_skeleton.

4.1.14 TODO

TODO list for upstream Buildroot describing what areas is in the works. Feel free to
work on TODO material if you are confident with how Buildroot works.

4.1.15 toolchain/

Directory containing makefiles for the toolchain that describes how it should be built
and what options a user have. The toolchain is a vital part of buildroot, since you are
not capable to build anything without a working toolchain. Given that the user has
chosen an internal toolchain.

4.1.16 toolchain_build_avr32/

Directory containing the extracted toolchain source tarballs and where Buildroot
builds the toolchain.

6 AVR32003
32062E-AVR32-11/08

5 Flexibility and configuration
Buildroot is also highly flexible. For starter we recommend following the getting
started guide, but you can also configure which applications to put into your image.

Enter the base directory of Buildroot and type:

• make menuconfig

A curses based menu system will guide you around the different choices.

If a user wants to use the atngw100 or atstk1002 default configuration as a base, but
do minor adjustment the following short guide will configure Buildroot to build it as a
new project.

Start off in the base directory for Buildroot and type:

• make atstk1002_defconfig or what is appropriate for the target board.
• make menuconfig

o Project Options --->
 Project name, change this to something descriptive.

Exit the menu system and save the configuration, then type:

• make

Your file system will now be located in binaries/<project name>/ directory.

6 Deploy binaries to target system
Buildroot creates binaries ready to download onto the target, using a flash
programmer like avr32program or a SD-card. In the binaries/ directory, in the base
directory of Buildroot, the user can find the following files depending on the
configuration system:

• <board base name>-linux-<version>.gz
• rootfs.avr32.ext2
• rootfs.avr32.ext2.bz2
• rootfs.avr32.jffs2
• rootfs.avr32.jffs2-<partition_name>
• rootfs.avr32.tar
• rootfs.avr32.tar.bz2
• u-boot.bin

6.1.1 <board base name>-linux-<version>.gz

This is the kernel targeted for your board. It is also included in the root file system
images so the user does not need to explicit download this into flash.

 AVR32003

 7

32062E-AVR32-11/08

6.1.2 rootfs.avr32.ext2

This is the EXT2 version of the root file system. It is targeted for SD/MMC-card boot,
or other media that can hold an EXT2 file system. The .bz2 version of this file is a
bzip2-compressed version of the same file system.

6.1.3 rootfs.avr32.jffs2

The JFFS2 root file system is target for the onboard flash device. Onboard flash is
typically NOR, NAND or DataFlash®.

6.1.4 rootfs.avr32.jffs2-<partition_name>

Buildroot can make multiple JFFS2 images when the target device has more than one
flash device or partition. In this case an extension is added to each image file
indicating the target flash device or partition.

For example a build for the ATNGW100 can generate three images:

• rootfs.avr32.jffs2
• rootfs.avr32.jffs2-root
• rootfs.avr32.jffs2-usr

Where the first file without an extension is only a file touched by the make system and
should be ignored. The other two files are for programming into the two flash devices
on the ATNGW100. They are named according to their content, where the root image
is “/” and the usr image is “/usr”.

6.1.5 rootfs.avr32.tar

A full file system is available in a tar archive. This is useful if the user wants to have
the root file system mounted over network or extract the file system to a removable
medium like SD/MMC-card.

6.1.6 u-boot.bin

U-boot is the boot loader made for the target board; this must be programmed with a
flash programming tool like avr32program.

7 Download
Buildroot for AVR32 can be downloaded from
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4401.

8 Further reading
For adding user specific packages or custom target board to Buildroot, see the on-line
documentation and application notes on http://www.atmel.com/AVR32.

General online documentation provided by Atmel about Buildroot is available on
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4401.

For upstream documentation visit http://buildroot.uclibc.org/buildroot.html, an external
site not in affection with Atmel.

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr32@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR®, DataFlash® and others, are the registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

32062E-AVR32-11/08

	1
Introduction
	2
Requirements
	2.1
Using a proxy when downloading

	3
Getting started for AVR32 targets
	4
Directory structure
	4.1.1
 binaries/
	4.1.2
build_avr32/
	4.1.3
.config
	4.1.4
Config.in
	4.1.5
.defconfig
	4.1.6
dl/
	4.1.7
docs/
	4.1.8
include/
	4.1.9
Makefile
	4.1.10
package/
	4.1.11
project/
	4.1.12
project_build_avr32/
	4.1.13
target/
	4.1.14
TODO
	4.1.15
toolchain/
	4.1.16
toolchain_build_avr32/

	5
Flexibility and configuration
	6
Deploy binaries to target system
	6.1.1
<board base name>-linux-<version>.gz
	6.1.2
rootfs.avr32.ext2
	6.1.3
rootfs.avr32.jffs2
	6.1.4
rootfs.avr32.jffs2-<partition_name>
	6.1.5
rootfs.avr32.tar
	6.1.6
u-boot.bin

	7
Download
	8
Further reading

