

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

September 2014

FSA9285

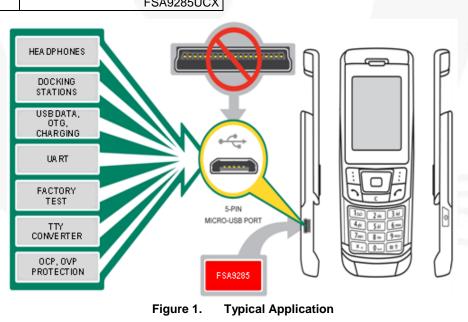
I

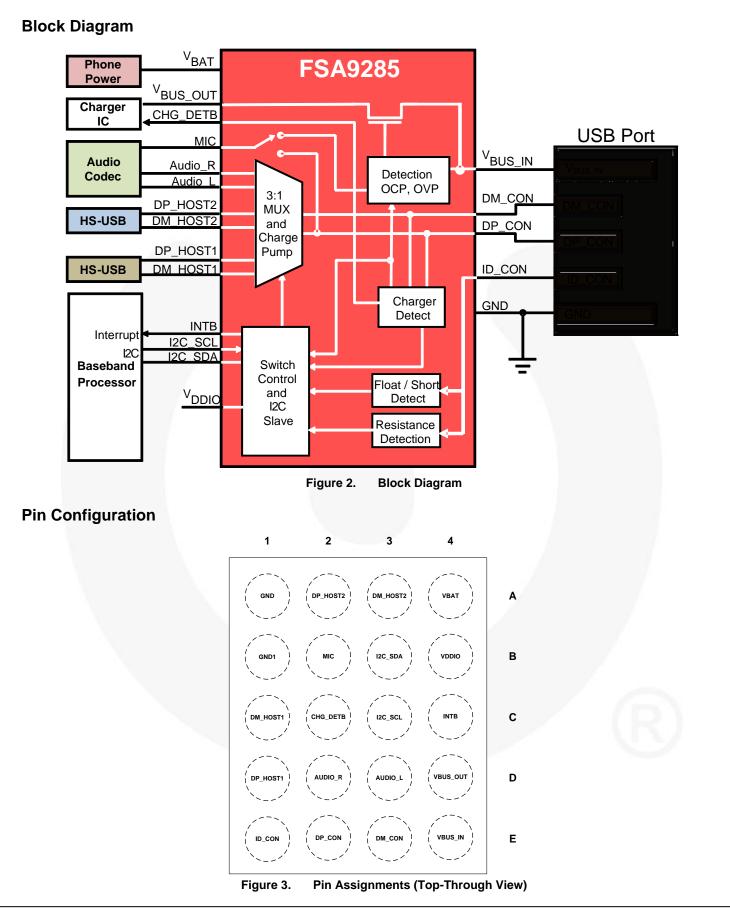
MCPC Compliant USB Port Multimedia Switch with Auto-Detection

FSA9285 — MCPC-Compliant, USB-Port, Multimedia Switch with Auto-Detection

Features

Switch Type	Audio, FS/HS-USB, Charging				
Switch Mechanism	Programmable Switching with				
Switch Mechanism	Available Interrupt				
	Headsets with MIC and Send/End				
	USB Data Cable				
Accessory Detection	USB Chargers (Car, CDP, DCP)				
Accessory Detection	USB On-The-Go (OTG)				
	MCPC Specification Compliant				
	Programmable Modes				
USB	FS and HS 2.0 Compliant				
	Battery Charging 1.2 Compliant				
USB Charging	Integrated FET, Charger Detect,				
	OCP (1.45 A), OVP (6.5 V - 28.0 V)				
	Left, Right, MIC (Negative Swing)				
Audio	Built-in Termination Resistors for				
	Audio Pop Reduction				
V _{BAT}	2.7 to 4.4 V				
Programmability	l ² C				
ESD	15 kV IEC 61000-4-2 Air Gap				
Deelvere	20-Lead, WLCSP (2.010 x 1.672 x				
Package	0.625 mm, 0.4 mm Pitch)				
Ordering Information	FSA9285UCX				


Description


The FSA9285 is a high-performance multimedia switch featuring automatic switching and accessory detection for a USB port. The FSA9285 allows sharing of a common USB port to pass audio and USB data while simultaneously charging.

In addition, the FSA9285 integrates detection of accessories such as headphones, headsets Mobile Computing Promotion Consortium (MCPC) with MIC and Send/End, car chargers, USB chargers, USB On-The-Go (OTG), and Accessory Charging Adapters (ACA) to use a common USB connector. The FSA9285 can be programmed for manual or automatic switching of USB data paths based on the accessory detected. With an integrated 28 V over-voltage and 1.45 A over-current protected FET, the FSA9285 integrates common USB protection functions for V_{BUS}.

Applications

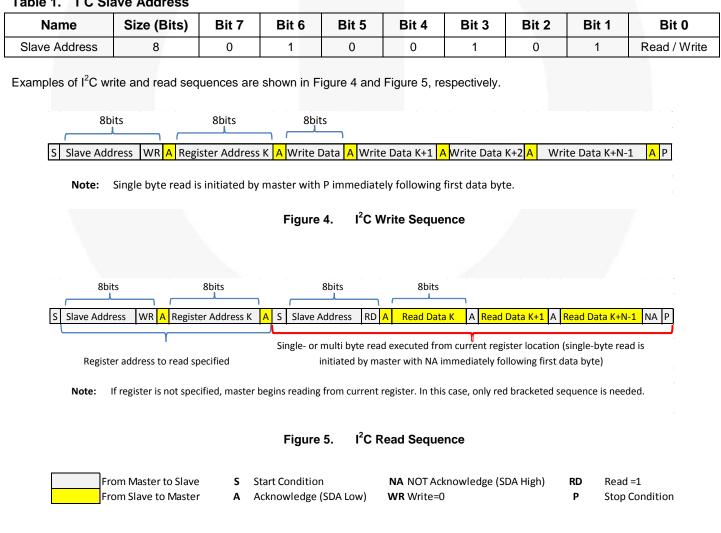
Mobile Phones, Portable Media Players

Pin Descriptions

Name	Pin #	Туре	Default State	Description
USB Interface	L	· · · · · · · · · · · · · · · · · · ·		·
DP_HOST1	D1	Signal Path	Open	D+ signal switch path, dedicated USB port to be connected to the resident USB transceiver on the phone
DM_HOST1	C1	Signal Path	Open	D- signal switch path, dedicated USB port to be connected to the resident USB transceiver on the phone
DP_HOST2	A2	Signal Path	Open	D+ signal switch path, dedicated USB port to be connected to the resident USB transceiver on the phone
DM_HOST2	A3	Signal Path	Open	D- signal switch path, dedicated USB port to be connected to the resident USB transceiver on the phone
V _{BUS_IN}	E4	Power Path	N/A	Input voltage supply pin to be connected to the V_{BUS} pin of the USB connector
V _{BUS_OUT}	D4	Power Path	N/A	Output voltage supply pin to be connected to the source voltage pin on the charger IC
CHG_DETB	C2	Open-Drain Output	Hi-Z	Open-drain active LOW output, used to signal the charger IC that a charger has been attached
Audio Interfac	e			
Audio_R	D2	Signal Path	Open	Right audio channel switch path from mobile phone audio CODEC
Audio_L	D3	Signal Path	Open	Left audio channel switch path from mobile phone audio CODEC
МІС	B2	Signal Path	Open	Connected to the mobile phone audio CODEC MIC input pin to complete the MIC switch path
Connector Inte	erface			
ID_CON	E1	Signal Path	Open	Connected to the USB connector ID pin and used for detecting accessories or button presses
DP_CON	E2	Signal Path	Open	Connected to the USB connector D+ pin; depending on the signaling mode, can be switched to DP_HOST1, DP_HOST2, or Audio_R pins
DM_CON	E3	Signal Path	Open	Connected to the USB connector D- pin; depending on the signaling mode, can switched to DM_HOST1, DM_HOST2, or Audio_L pins
Power Interfac	ce			
V _{BAT}	A4	Power Path	N/A	Input voltage supply pin to be connected to the mobile phone battery output or to an internal regulator on the phone
V _{DDIO}	B4	Power Path	N/A	Baseband processor interface I/O supply pin
GND1	B1	Ground	N/A	Ground
GND	A1	Ground	N/A	Ground
I ² C Interface				
I2C_SCL	C3	Input	Hi-Z	I ² C serial clock signal to be connected to the phone-based I ² C master
I2C_SDA	B3	Open-Drain I/O	Hi-Z	I ² C serial data signal to be connected to the phone-based I ² C master
INTB	C4	CMOS Output	LOW	Interrupt active LOW output used to prompt the phone baseband processor to read the I^2C register bits, indicates a change in ID_CON or $V_{\text{BUS_IN}}$ pin status or accessories' attach status

1. Functional Description

The FSA9285 is a USB port accessory-detection switch with integrated 28 V over-voltage and 1.45 A over-current protected FET. Fully controlled using I²C protocols, the FSA9285 enables all of the following to use a common connector (micro / mini USB 2.0 port): high-speed USB 2.0 standard downstream data port, stereo and mono audio headphones / headsets with or without a microphone, wired remote controller with optional send / end button, USB Charging Downstream Port (CDP) battery charger, USB Dedicated Charging Port (DCP) charger, and ANSI/CEA-936-A USB Car Kit charger.


The FSA9285 enables factory-mode testing by defaulting to manual mode (EN MAN SW = 1) and defaulting the MANUAL SW register to USB switches DP_HOST1 / DM_HOST1 closed and the V_{BUS} FET closed. In manual configuration, USB switches DP_HOST1 / DM_HOST1 only close when an accessory is attached that has an ID_CON resistance (ID_CON not floating) and / or valid V_{BUS} voltage is present. The V_{BUS} FET only closes when V_{BUS} is valid. All switches remain open to protect the system when there is no accessory attached. This default switch condition can be overridden with I^2C commands.

Detection of USB accessories utilizing a USB micro-B or micro-A/B connector is made possible by the presence of a standard resistor between the ID pin and ground of the accessory. Advanced modes manage wired remote-control sensing for audio accessories. The FSA9285 is designed to allow audio signals to swing below ground on the USB 2.0 port data lines. Internal power for the FSA9285 is automatically derived from either the battery voltage (VBAT) or the USB supply (VBUS IN) for simplicity and long battery life.

2. I²C and Digital Core

The FSA9285 includes a full I²C slave controller. The I²C slave fully complies with version 2.1 of the I²C specifications. This block is designed for fast-mode, 400 kHz signals. The slave addresses are shown in Table 1. This block also includes the chip master controller. The chip controller monitors commands sent to the FSA9285 via I²C from the baseband processor and takes action. The digital core takes inputs from the various functional blocks and the I²C commands received from the mobile phone baseband processor and relays relevant status updates to the phone.

I²C Slave Address Table 1.

3. Power-Up Initialization and Reset

FSA9285 operates correctly without special power sequencing. When power is first applied, the device undergoes a hardware reset and all the registers are initialized to the default values shown in Table 6. All of the combinations of valid V_{BUS_IN} and V_{BAT} are shown in Table 2.

As shown in Table 2, V_{BAT} is used as the primary power supply. V_{DDIO} is the dedicated baseband IO voltage and is only used for I^2C interface and interrupt processing within the FSA9285.

When V_{BAT} is not valid, but V_{BUS_IN} is; the FSA9285 powers off V_{BUS_IN} . In this condition, the FSA9285 operates in its default state and is able to detect USB accessories and all chargers. The FSA9285 always turns on the V_{BUS} FET upon any attach state with V_{BUS_Valid} (unless Manual Mode is enabled with the V_{BUS} FET switch state configured open). This allows charging of a dead battery when the rest of the system is not powered to configure the FSA9285.

When the device is reset, all I²C registers are initialized to the default values shown in Table 6 (see Section 4 - Configuration). After reset or power up, the FSA9285 enters Standby Mode and is ready to detect accessories sensed on its $V_{BUS_{IN}}$ or ID_CON pins.

The device has three hardware reset mechanisms:

- Power-on reset caused by the initial rising edge of V_{BUS} (if V_{BAT} < 1.0 V) or rising edge of V_{BAT} (If not V_{BUS_VALID})
- The falling edge of V_{DDIO}
- I²C reset: holding I2C_SDA and I2C_SCL LOW for 30ms

The device has one software reset mechanism:

Writing the ResetB bit (bit 6) in the Control register (02h)

Volid		Volid			Enabled Functionality	
Valid V _{BUS_IN}	Valid V _{BAT}	Valid V _{DDIO} ⁽¹⁾	Power State	Charging through FETProcessor Communication (I ² C & Interrupts)		n Detection
NO	NO	NO	Power Down	NO	NO	NO
NO	NO	YES ⁽²⁾			ILLEGAL STATE	
NO	YES	NO	Powered Off V_{BAT}	NO	NO	YES
NO	YES	YES	Powered Off V_{BAT}	NO	YES	YES
YES	NO	NO	Powered Off V _{BUS_IN}	Yes	NO	YES
YES	YES	NO	Powered Off V_{BAT}	YES	NO	YES
YES	NO	YES ⁽²⁾	Powered Off V _{BUS_IN}	YES	YES	YES
YES	YES	YES	Powered Off V_{BAT}	YES	YES	YES

Table 2. Power States Summary

Notes:

1. V_{DDIO} is expected to be the same supply used by the baseband I/Os.

2. This is not a typical state. Both VBAT and VDDIO are typically provided from the same regulator.

4. Configuration

The FSA9285 must be configured for operation upon reset. There are several options to note about reset configuration:

- 1. The Interrupt Mask bit is set and must be cleared for the FSA9285 to interrupt the host processor.
- Upon hardware reset, the USB Path DP_HOST1 / DM_HOST1 switches are configured to close when an accessory is attached (with an ID_CON resistance or valid V_{BUS} voltage) to support production programming. These switches may be opened using I²C commands.
- 3. If MIC Mode is going to be used, it is recommended that MIC_OVP_EN bit be set to 1 at reset.
- 4. To enable manual configuration of the USB switches, the EN_MAN_SW bit must be set to 1. The switch settings then override any automatic settings (this assumes that the USB discovery state machine has completed its operations and a device is attached). For the weak (or dead) battery case to work reliably, V_{DDIO} must be removed (to reset the FSA9285 state) whenever the battery is too low for reliable I²C communication.
- Performing a software reset sets all I²C Register Map (Table 6) registers to default, with the exception of the Control register, Manual SW register, and the Manual CHG_CTRL register. These registers are only reset to default on a hardware reset.

5. Interrupt Operation

The baseband processor recognizes interrupt signals by observing the INTB signal, which is active LOW. Interrupts are masked upon reset via the INT Mask register bit (bit 0 of Control register, address 02h in Table 6 of the l^2 C register map) and INTB pin defaults HIGH. After the INT Mask bit is cleared by the baseband processor, the INTB pin is generally driven HIGH (INTB is not an open-drain output) in preparation for a future interrupt. The INTB remains HIGH until the INTB mask is cleared. If the Interrupt Mask bit in the l^2 C Control register is written LOW when an interruptible event occurs, INTB transitions LOW and returns HIGH when the processor reads the Interrupt register at addresses 03h.

6. Analog Switch Descriptions

The FSA9285 has a three-port data switch, providing routing capability to two data ports and one audio port. The two data switches are high bandwidth to provide high-speed USB 2.0 "eye" compliance. These switches also operate full-swing for full-speed USB and UART signals up to 4.4 V.

The high-performance negative-swing-capable audio switch utilizes a termination resistor for audio pop reduction. The audio configuration also provides for routing a microphone signal from a headset. The MIC signals can be routed to either the $V_{BUS_{-}IN}$ pin for stereo audio configurations or the DP_CON pin for mono audio configurations that also allow simultaneous charging over the V_{BUS} line.

7. Accessory Detection

In Standby Mode, after power-up or reset, the FSA9285 monitors the V_{BUS_IN} and ID_CON pins for any connectivity using very low power (see "Battery Supply Standby Mode Current" in the Switch Path DC Electrical Characteristics section). To minimize standby power, many functional blocks are powered down until an accessory attach is detected. The V_{BUS IN} detection recognizes if the voltage on V_{BUS IN} is within the valid range (>4.0 V). For resistance to GND on the ID_CON pin, the FSA9285 measures voltage with an injected current to determine this resistance. All accessories attached or detached are reported to the processor via the Interrupt register. Any changes of resistance on the ID_CON pin are reported as a Resistor_Change interrupt. Additional information about the accessory is reported in the Device Type, Resistor Code, and Status registers. For USB accessories without an ID_CON resistance, a V_{BUS Valid} Change interrupt is reported to signal an attach or detach condition. Status of V_{BUS_Valid} and ID_CON resistance is always available after any interrupt.

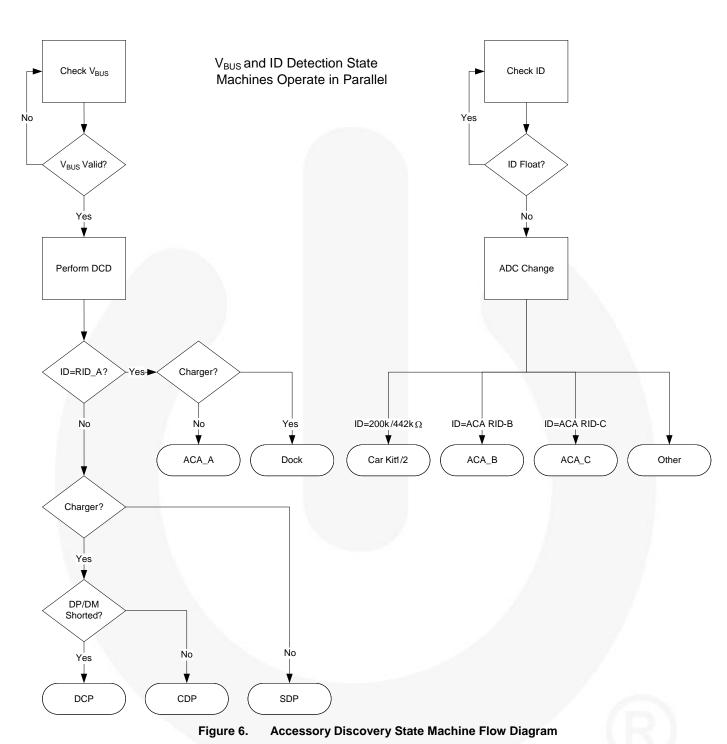
The USB detection flow is show in Figure 6. Note that the INTB Mask bit in the Control register must be cleared after a reset or

power-up before interrupts can be signaled by the FSA9285. Individual Interrupt Masks bits can be enabled by writing the Interrupt Mask register (see Table 6).

ID_CON resistor detection is accomplished in a little more than three times the "Resistor Detection Time," where Resistor Detection Time bits are programmable in the Timing Set register. The FSA9285 is designed to allow up to 1nF capacitance on the ID_CON pin. ID_CON is short-circuit protected from a faulty resistor or an accidental short where the current is limited to 5mA sourced by the FSA9285.

The detection of a $V_{\text{BUS_IN}}$ goes through the USB detection flow only once. $V_{\text{BUS_IN}}$ must be removed before the USB detection state machine reverts to its initial state.

After an initial attach, the FSA9285 continuously monitors the ID pin for changes and reports those changes to the baseband processor. To provide the fastest response for changes in button checking after initial attach, the FSA9285 indicates a change in ID_CON resistor after two samples are taken instead of the three consecutive samples taken on initial attach. To save power, the resistor detection block can be disabled after an initial attach with the ID_DIS bit in the Control register. The resistor detection block is normally disabled when no ID_CON resistance is present (ID_CON floating) to save power. The condition of ID_FLOAT continues to be monitored regardless of the ID_DIS setting.


Whenever a resistance is measured on ID_CON, the USB discovery state machine halts after completion of its current state and the ID_CON state machine continues for accessory detection. The only exception is when an ACA RID-A accessory is detected. In this case, the USB discovery state machine is used to differentiate between a docking station and a powered A-device attached to a docking station (*per USB Battery Charging Specification 1.2*).

If the EN_MAN_SW bit is set on attach, FSA9285 configures the switches to the state in the MANUAL SW register.

Upon the removal of any accessory, the FSA9285 detects and indicates a change in ID_CON resistance (regardless of ID_DIS bit setting), a removal of V_{BUS_IN} , or both. The FSA9285 automatically opens all switches (and V_{BUS} FET) on detach (ID_FLOAT and V_{BUS} not valid), even if the FSA9285 is set to Manual Switching Mode.

For the weak battery case, the FSA9285 needs to be in Automatic Switching Mode. Should the processor NOT be able to respond to INTB, FSA9285 must be placed in Automatic Switching Mode explicitly or V_{DDIO} must be removed, resetting the FSA9285 state to its default values.

Note: If the FSA9285 is to be used in automatic switching mode ($EN_MAN_SW = 0$) then the Manual SW register must be configured for all switches OPEN).

Note:

3. Figure 6 illustrates operation with a valid V_{DDIO} supply voltage. Figure 6 does not illustrate Dead Battery Provision (DBP) See Section 9 for details.

Resistor	ID_CON	ID_CON Resistance to GND			11:0:1	Accessive Detected
Code ⁽⁴⁾	Min.	Тур.	Max.	USB Switches	Unit	Accessory Detected
22	0		18		Ω	OTG
20	19000	20000	21000		Ω	Resistor 20 kΩ
19	22800	24000	25200		Ω	Resistor 24 kΩ
18	27265	28700	30135		Ω	Resistor 28.7 kΩ
17	34675	36500	36865	YES	Ω	ACA RID-C ⁽⁵⁾
16	39798	40200	40602		Ω	Resistor 40.2 kΩ
15	44650	47000	49350		Ω	MCPC Send/End
14	55638	56200	56762		Ω	Resistor 56.2 kΩ
13	64600	68000	71400	YES	Ω	ACA RID-B ⁽⁵⁾
12	80275	84500	88725		Ω	Resistor 84.5 kΩ
11	96900	102000	107100		Ω	Phone Power Device
10	117800	124000	130200	YES	Ω	ACA RID-A ⁽⁵⁾
9	148500	150000	151500		Ω	Resistor 150 kΩ
8	171000	180000	183600		Ω	MCPC Maintenance
7	198000	200000	202000		Ω	Car Kit Type-1 Charger ⁽⁵
6	229680	232000	234320		Ω	Resistor 232 kΩ
5	272650	287000	301350		Ω	MCPC Mode 1
4	370500	390000	401700		Ω	MCPC Reserved
3	437580	442000	446420		Ω	Car Kit Type-2 Charger ⁽⁵
2	529150	557000	584850		Ω	MCPC Mode 3
1	757150	797000	836850		Ω	MCPC Mode 2
0	970000		Open		Ω	Float ⁽⁶⁾

Table 3. ID CON Resistor Identification

Notes:

The resistor code values are reported in the Resistor Code register whenever a valid resistor code value changes. See Table 4 for details, additional requirements may be applicable for detection. 4.

5.

Resistance \ge 970 k Ω status bit /ID_FLOAT=0. 6.

8. USB Port and Charger Detection

The FSA9285 can detect the USB 2.0 port types summarized in Table 4. V_{BUS} must be present to detect these accessories.

For SDP, CDP, and ACA USB accessories; the following pin mapping is automatically configured:

- DP_HOST1 = DP_CON (If EN_MAN_SW = 0)
- DM_HOST1 = DM_CON (If EN_MAN_SW = 0)
- VBUS_OUT = VBUS_IN

The FSA9285 allows factory testing or programming through the DP_HOST1 and DM_HOST1 switches by closing these switches when a USB cable with an ID resistance or V_{BUS} voltage is detected.

For USB chargers that do not automatically close USB switches, the switches can be closed manually through the Manual Switch register when EN_MAN_SW is enabled.

Whenever $V_{BUS_{IN}}$ becomes valid, the integrated 28 V charger FET is closed (unless EN_MAN_SW = 1 and Manual SW[1:0] \neq 11) and $V_{BUS_{IN}}$ voltage is continuously monitored to incorporate Over-Voltage Protection (OVP). If the attached device is recognized as one of the chargers in Table 4 (excluding SDP), the CHG_DETB pin goes LOW to send a signal to the charger IC, external to the FSA9285, to increase the charging current to the maximum allowed level by the Over-Current Protection (OCP) trigger (see the Switch Path DC Electrical Characteristics section). V_{BUS_OUT} must be valid 10ms before sourcing greater than 100 mA.

Resistor Code ⁽⁷⁾	V _{BUS_IN}	USB Switches ⁽⁸⁾	CHG_DETB ⁽⁸⁾	ID_CON Resistance to GND (kΩ)			Accessory Detected
Code		Switches		Min.	Тур.	Max.	
00111	5V	Open	Asserted	198	200	202	Car Kit Type-1 Charger
00011	5V	Open	Asserted	437.58	442.00	446.42	Car Kit Type-2 Charger
00000	5V	Open	Asserted	3 ΜΩ	Open	Open	USB Dedicated Charging Port, Travel Adapter or Dedicated Charger (DCP) ⁽⁹⁾
00000	5V	Auto_close	Asserted	3 MΩ	Open	Open	USB Charging Downstream Port (CDP) ⁽⁹
00000	5V	Auto_close	Not Asserted	3 MΩ	Open	Open	USB Standard Downstream Port (SDP) ⁽⁹
10001	5V	Auto_close	Asserted	34.675	36.500	36.865	ACA RID-C
01101	5V	Auto_close	Asserted	64.6	68.0	71.4	ACA RID-B
01010	5V	Auto_close	Asserted	117.8	124.0	130.2	ACA RID-A

Table 4. ID CON and VRUS Detection for USB and Car Kit Devices

Notes:

7. The resistor code values are reported in the Resistor Code register, independent of the state of USB switches or V_{BUS_IN}.

- 8. In Table 4, switches auto-close and CHG_DETB are asserted only if V_{BUS_VALID}.
- 9. The FSA9285 follows the Battery Charging 1.2 specification, which uses DP_CON and DM_CON to determine the USB accessory attached. Refer to Battery Charging 1.2 Specification for details.

9. Dead Battery Provision

Since V_{BUS} charging power connects through it, the FSA9285 must automatically turn on the V_{BUS} FET to allow the mobile device to charge after shutdown due to a dead battery. When detecting that V_{BUS} is valid, the FSA9285 automatically turns on the V_{BUS} FET after BC1.2 charger detection is complete. Turning on at this time allows the DP / DM switches to turn on at the same time as the V_{BUS} FET.

If the FSA9285 detects a USB port (SDP, CDP, or DCP) when V_{BAT} and V_{DDIO} are not valid, it applies 0.6V to DP_CON in accordance with the USB BC1.2 Dead Battery Provision. The FSA9285 automatically removes the 0.6V on DP_CON upon detach of an accessory, when V_{DDIO} returns to a valid voltage, or when $V_{BAT} > V_{BAT_TH}$. If the mobile device should manually assert the 0.6V on DP_CON, it can do so using the ASSERT_D+ bit (bit 2) of the Manual CHG_CTRL register (14h); V_{BUS} must be valid to do so.

10. Over-Voltage Protection (OVP) and Over-Current Protection (OCP)

When V_{BUS_IN} is less than nominally 6.5V, the FSA9285 allows the V_{BUS_IN} supply to enter the chip-power select voltage regulator block. For V_{BUS_IN} greater than nominally 6.5V, the input is disconnected, protecting the FSA9285 from excess voltage. Upon entering Shutdown Mode, the OVP bit in the Interrupt register is set HIGH (to reflect a change in OVP state) and an interrupt is sent to the baseband. The OVP Status register is also written HIGH to indicate that an OVP condition is present. In Shutdown Mode, the FSA9285 continually monitors V_{BUS} and exits Shutdown Mode when V_{BUS} drops to below 6.5V or it senses an accessory detach. Upon exiting an OVP condition, another OVP interrupt is triggered (reflecting a change in OVP state) and the OVP status bit is cleared (indicating an OVP condition is not present).

The Over-Current Protection (OCP) feature limits current through the charger FET to nominally 1.45 A. OCP is only implemented when V_{BUS_IN} is provided by the attached accessory. The FSA9285 senses an over-current event, opens (turns off) the V_{BUS} FET, and reports this to the baseband by asserting the OCP bit (to reflect a change in OCP state) in the Interrupt register. When in an OCP state, the OCP status bit is written HIGH. While the OCP condition is present, the FSA9285 continually monitors the V_{BUS} current and exits Shutdown Mode when the V_{BUS} current drops below nominally 1.45 A or it senses an accessory detach. Upon exiting OCP state, the OCP Interrupt bit is again written HIGH, indicating a change in OCP state and the OCP Status bit is written LOW, indicating an OCP state is not present.

11. Audio Accessory Detection

After an audio device is attached and a change in ID_CON resistance is detected (if ID_DIS=0), the FSA9285 asserts an interrupt and the baseband processor can read the Resistor Code register to determine the ID_CON resistance change to detect if a key, such as MCPC SEND / END, was pressed.

For powered audio accessories with V_{BUS} present, the FSA9285 detects when V_{BUS} is valid and interrupts the baseband processor. The baseband processor must manually control the FSA9285 switches for proper functionality. MIC can be switched to either V_{BUS} or DP_CON through the Manual SW register, allowing more flexibility.

12. Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameter			Min.	Max.	Unit	
V_{BAT}/V_{DDIO}	Supply Voltage from Battery / Ba	seband			-0.5	6.0	V	
V_{BUS_IN}	Supply Voltage from Micro-USB	Connector	onnector			28.0	V	
			USB		-1.0	6.0		
V_{SW}	Switch I/O Voltage	e		o Audio Path Active	-2.0	6.0	V	
			All Other Ch	annels	-0.5	6.0		
I _{IK}	Input Clamp Diode Current				-50		mA	
I _{CHG}	Charger Detect CHG_DETB Pin	Current Sink Ca	apability			30	mA	
			USB			50		
I _{SW}	Switch I/O Current (Continuous)		Audio			60	mA	
						50		
		USB			150	mA		
ISWPEAK	Peak Switch Current (Pulsed at 1	Audio			150	mA		
ISWPEAK	<10% Duty Cycle)		Charger FE	Т		2	А	
			All Other Channels			150	mA	
T _{STG}	Storage Temperature Range				-65	+150	°C	
TJ	Maximum Junction Temperature					+150	°C	
TL	Lead Temperature (Soldering, 10) Seconds)				+260	°C	
		IEC 61000-4-2 System Level USB Connector P ID_CON, DM_C ID_CON) to GND			15000			
ESD					8000		V	
200	Human Body Model, JEDEC JES	SD22-A114		All Pins	5000		v	
	Charged Device Model, JEDEC	JESD22-C101		All Pins	1500			

13. Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Тур.	Max.	Unit	
V_{BAT}	Battery Supply Voltage	2.7	3.8	4.4	V		
$V_{\text{BAT}_{\text{TH}}}$	Battery Supply Voltage Threshold for Weak	2.7	3.0	3.3	V		
V _{BUS_IN}	Supply Voltage from V _{BUS_IN} Pin	4.0		5.5	V		
V _{DDIO}	Processor Supply Voltage		1.7		3.6	V	
		USB Path Active	0		4.4		
V _{SW}	Switch I/O Voltage	Audio Path Active	-1.5		3.0	V	
		All Other Pins	0		5.0)	
ID _{CAP}	Capacitive Load on ID_CON Pin for Reliab			1.0	nF		
T _A	Operating Temperature		-40		+85	°C	

Threshold Current

Charging FET ON Path

Symbol

VOH

 V_{OL}

VIL

VIH

I_{I2C}

IOFF

INO(OFF)

IIDSHRT

RON

VOVP

RON

IOCP

Switch Off Characteristics

14. Switch Path DC Electrical Characteristics All typical values are at TA=25°C unless otherwise specified.

Parameter

Host Interface Pins (INTB, CHG-DETB) Output High Voltage⁽¹⁰⁾

Output Low Voltage

Low-Level Input Voltage

High-Level Input Voltage

Power-Off Leakage Current

USB Switch (DP_HOSTn, DM_HOSTn) ON Paths

Over-Voltage Protection (OVP)

Over-Current Protection (OCP)

Charging FET On Resistance^(11,12)

Threshold Voltage

USB Switch Paths On Resistance^(11,12)

Off Leakage Current

Short-Circuit Current

I²C Interface Pins – Fast Mode (I2C_SDA, I2C_SCL)

Input Current of I2C_SDA and I2C_SCL

Pins, Input Voltage 0.26 V to 2.34 V

Audio_R	/ Audio_L Switch ON Paths				1			
D	R _{ON} Audio Switch On Resistance ^(11,12)	3.0 to 4.4	V _{L/R} =-0.8 V, 0.8 V, I _{ON} =30 mA, f=0-470 kHz			3.5		
RON			V _{L/R} =-1.5 V, 1.5 V, I _{ON} =30 mA, f=0-470 kHz			4.0	Ω	
D	Austic D. Elsteres (11.13)		V _{L/R} =-0.8 V, 0.8V, I _{ON} =30 mA, f=0-470 kHz			0.1	Ω	
R _{FLAT} Audio R _{ON} Flatness ^{(11,13}		3.0 to 4.4	V _{L/R} =-1.5V, 1.5V, I _{ON} =30 mA, f=0-470 kHz			0.2	Ω	
R _{TERM}	Internal Termination Resistors				1.5		kΩ	

Continued on the following page...

T_A = -40 to +85°C

Typ.

0.001

5

8

11

6.5

200

Min.

 $0.7 \ x \ V_{\text{DDIO}}$

0.7 x V_{DDIO}

-10

-0.100

6.2

1.2

Condition

All Data Ports Except

MIC, I/O Pins=0.3 V,

4.1 V, or Floating Current Limit if

 $V_{D+/D}=0$ V, 0.4 V,

V_{D+/D-}=0V, 3.6 V,

V_{BUS_IN}=4.2 V-5.0 V,

ID CON=0V

I_{ON}=8 mA

I_{ON}=8 mA

I_{ON}=1 A

V_{BUS IN}=5.2 V

Audio & MIC, V_{SW}=4.4 V All Ports Except Audio &

I_{OH}=2 mA

I_{OL}=8 mA

 $V_{BAT}(V)$

3.0 to 4.4

0

4.4

3.0 to 4.4

Unit

V

V

V

V

μA

μA

μA

mΑ

Ω

Ω

V

mΩ

А

Max.

0.4

0.3 x V_{DDIO}

10

10

0.100

10

17

6.9

1.65

14. Switch Path DC Electrical Characteristics (Continued)

All typical values are at T_A=25°C unless otherwise specified.

Symbol	Deremeter		Cond	lition	T _A =	-40 to +8	5°C	Unit
Symbol	Parameter	V _{BAT} (V)	Cond	lition	Min.	Тур.	Max.	
MIC Swite	ch ON Paths							•
P	(11.12)		MIC Connected to V _E V _{SW} =0 V, 2.8 V, I _{ON} =3			40		
R _{ON}	R _{ON} MIC Path ON Resistance ^(11,12)	3.0 to	MIC Connected to DP_CON, V _{SW} =0 V, 2.8 V, I _{ON} =30 mA			40		Ω
MIC _{OVP}	Over-Voltage Protection (OVP) Threshold Voltage with MIC on V _{BUS_IN} ⁽¹⁴⁾		MIC Connected Entering OVP	2.80		3.35	v	
Total Cur	rent Consumption ⁽¹⁶⁾							
	Battery Supply Standby Mode Current No Accessory Attached (ID_CON Floating)	3.0 to	VBUS Floating	VBUS Floating		10	15	
IBAT	Average Battery Supply Standby	4.4	$V_{BUS} = 0 V$	ID_DIS=1		35	50	μA
	Mode Current with Accessory Attached (ID_CON Not Floating)		$V_{BUS} = 5 V$	ID_DIS=1		100 ⁽¹⁶⁾	150 ⁽¹⁶⁾	

Notes:

10. Does not apply to the CHG_DETB pin because it is open drain.

11. Limits based on Electrical Characterization data.

12. On resistance is the voltage drop between the two terminals at the indicated current through the switch.

13. Flatness is the difference between the maximum and minimum values of on resistance over the specified range of conditions.

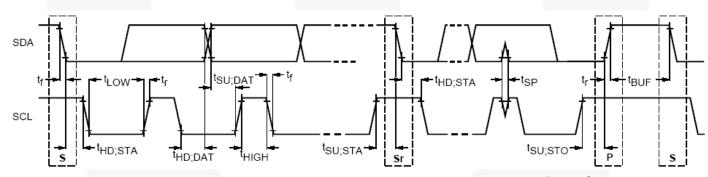
14. The MIC bias applied should not exceed 2.8 V.

15. V_{DDIO} of either 0 V or in the valid range of 1.7 V to 3.6 V.

16. Typically the battery charges from V_{BUS} .

15. Capacitance

Symbol	Parameter	V AA	Condition	T _A = -40 to +85°C			Unit
Symbol	Faiameter	V _{BAT} (V)	Condition	Min.	Тур.	Max.	Unit
C _{ONUSB}	DP_CON, DM_CON On Capacitance (USB Mode, Both HOST1 and HOST2)	3.8	V _{BIAS} =0.2 V, f=1 MHz		8		pF
Cı	Capacitance for Each I/O Pin	3.8			2		pF
C _{OFF}	Off Capacitance (HOST1 and HOST2)	3.8			2		pF

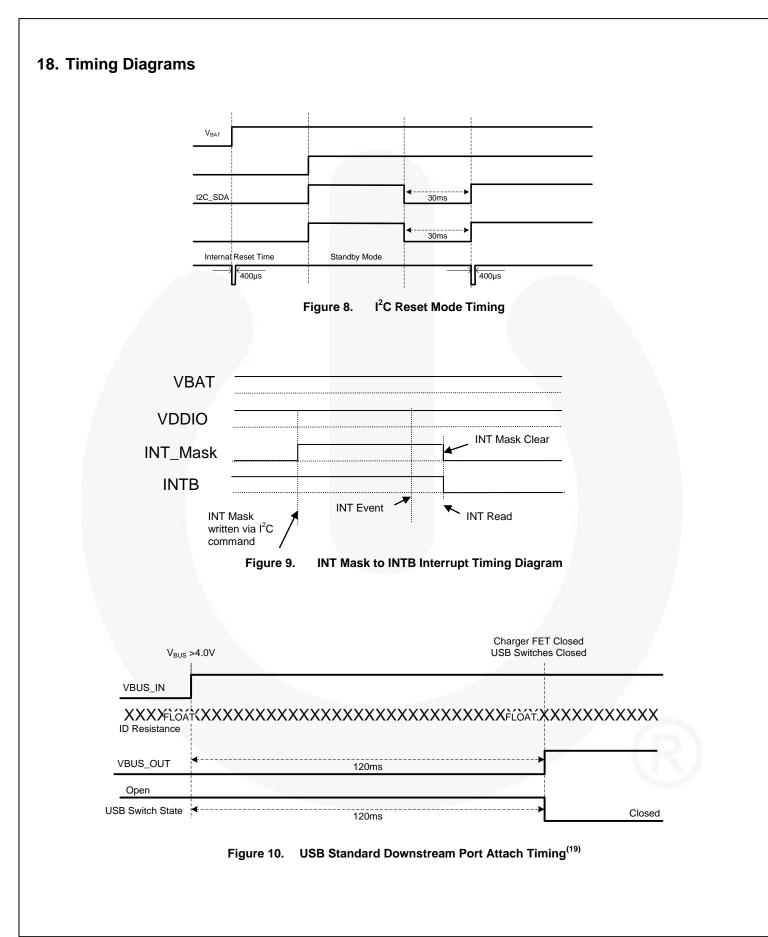

16. I²C AC Electrical Characteristics

Cumbal	Desemeter		Fast Mode	
Symbol	Parameter	Min.	Max.	Unit
f _{SCL}	SCL Clock Frequency	0	400	kHz
t _{HD;STA}	Hold Time (Repeated) START Condition	0.6		μs
t _{LOW}	LOW Period of SCL Clock	1.3		μs
t _{HIGH}	HIGH Period of SCL Clock	0.6		μs
t _{SU;STA}	Set-up Time for Repeated START Condition	0.6		μs
t _{HD;DAT}	Data Hold Time	0	0.9	μs
t _{SU;DAT}	Data Set-up Time ⁽¹⁷⁾	100		ns
tr	Rise Time of SDA and SCL Signals ⁽¹⁸⁾	20+0.1Cb ⁽¹⁷⁾	300	ns
t _f	Fall Time of SDA and SCL Signals ⁽¹⁸⁾	20+0.1C _b ⁽¹⁷⁾	300	ns
t _{SU;STO}	Set-up Time for STOP Condition	0.6		μs
t _{BUF}	BUS-Free Time between STOP and START Conditions	1.3		μs
t _{SP}	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns

Notes:

17. C_b equals the total capacitance of one BUS line in pf. If mixed with high-speed devices; faster fall times are allowed, according to the I²C Bus specification.

18. A fast-mode I^2C -Bus[®] device can be used in a Standard-Mode I^2C -Bus system, but the requirement that $t_{SU;DAT} \ge 250$ ns must be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{r_max} + t_{SU;DAT} = 1000 + 250 = 1250$ ns before the SCL line is released (according to the Standard-Mode I^2C Bus specification).


Table 5. I²C Slave Address

Name	Size (Bits)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Slave Address	8	0	1	0	0	1	0	1	R/W

17. Switch Path AC Electrical Characteristics

All typical values are for $V_{\text{BAT}}{=}3.8$ V at $T_{\text{A}}{=}25^{\circ}\text{C}$ unless otherwise specified.

Ourseland	Demonster		O an dition a	T _A = -40 to +85°C			Unit
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
Vtall	Active Channel Crosstalk	Audio Mode	f=20 kHz, R_T =32 Ω , C_L =0 pF		-90		40
Xtalk	DP_CON to DM_CON	USB Mode	f=1 MHz, R_T =50 Ω , C_L =0 pF		-60		dB
O _{IRR}	Off Isolation	Audio Mode	f=20 kHz, R_T =32 Ω , C_L =0 pF		-100		dB
UIRR		USB Mode	f=1 MHz, R_T =50 Ω , C_L =0 pF		-60		uБ
PSRR	Power Supply Rejection Ratio	, MIC on	Power Supply Noise 300Mv _{PP} , f=217 Hz Sine Wave		-100		dB
THD	Total Harmonic Distortion (Au	dio Path)	20 Hz to 20 kHz, R _L =32/16 Ω, Input Signal Range -1.5 V, 1.5 V		0.07		%
t _{SK(P)}	Skew of Opposite Transitions Output (USB Mode)	of the Same	$t_r{=}t_f{=}750$ ps (10-90%) at 240 MHz, $C_L{=}0$ pF, $R_L{=}50$ Ω		35		ps
t _{I2CRST}	Time When I2C_SDA and I2C LOW to Cause Reset	SCL Both	See Figure 8	30			ms
tSDPDET	Time from V _{BUS_IN} Valid to V _{BU} Charger FET Closed and USE Closed for USB Standard Dov	3 Switches	See Figure 10		120		ms
tсндоит	Time from V _{BUS_IN} Valid to V _{BU} Charger FET Closed for Both Ports (CDP and DCP)		See Figure 11		160		ms
t _{CARKIT}	Time from V _{BUS_IN} Valid to Car Type-2 Charger Detected	Kit Type-1 or	See Figure 12		140		ms
tiddet	Time from ID_CON Not Floati LOW to Signal Accessory Atta ID_CON Resistance-Based O (V _{BUS_IN} Not Valid, Default tim configuration)	ached that is nly	See Figure 13		150		ms
t _{BC11}	Timeout for Data Contact Dur	ng DCD Check		300	600	900	ms

FSA9285— MCPC Compliant USB Port Multimedia Switch with Auto-Detection

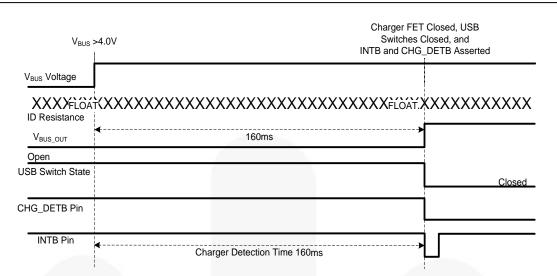
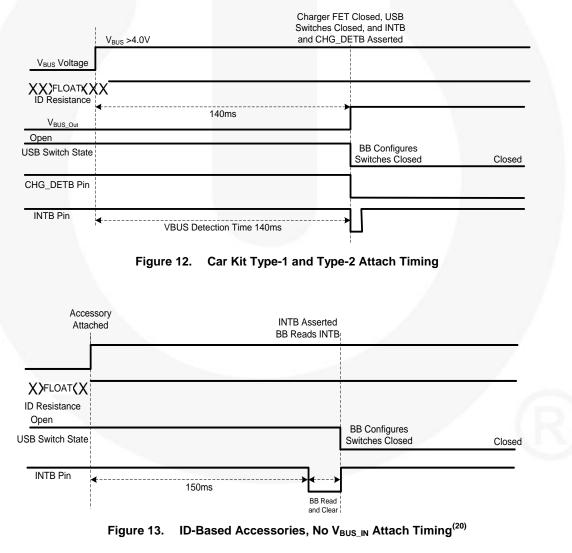



Figure 11. USB Dedicated Charging Port (DCP) or Charging Downstream Port (CDP) Attach Timing⁽¹⁹⁾

Notes:

- 19. USB Switch State timing is based on Automatic Switching mode (EN_MAN_SW = 0). Automatic switching excludes DCP. 20. ID CON resistance detection based on default Timing Set and Applications register values and on initial ID_CON accessory
- attach only (50 ms Resistor Detection Time with 3 ID checks on initial attach = 150 ms typical detection time).

19. Bit Definitions

Table 6. I²C Register Map

	10100										
Address	Register	Туре	Reset Value	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01H	Device ID	R	00010000			Version I	D			Do Not Use	
02H	Control	R/W	11010001	DCD Timeout EN	RESETB	ID_DIS	EN_MAN_SW	Do Not Use	Do Not Use	Do Not Use	INT Mask
03H	Interrupt	R/C	00000000	Do Not Use	OCP Change	OVP Change	MIC_OVP Change	Resistor Code Change	V _{BUS} _Valid Change	BC1.2_Complete	Do Not Use
05H	Interrupt Mask	R/W	00000000	Do Not Use	OCP	OVP	MIC_OVP	Resistor Code Change	V _{BUS} _Valid	BC1.2_Complete	Do Not Use
07H	Resistor Code	R	00000000	Do Not Use	Do Not Use	Do Not Use			Resistor Code		
08H	Timing Set	R/W	00000000		Do No	t Use			Resistor Detection Time		
09H	Status	R	00000000	ID_SHORT	OCP	OVP	MIC_OVP	/ID_FLOAT	$V_{\text{BUS}}Valid$	BC1.2_Active	DCD
0AH	Device Type	R	00000000	Do Not Use	Do Not Use	Dock	Do Not Use	Do Not Use	USB Dedicated Charging Port (DCP)	USB Charging Downstream Port (CDP)	USB Standard Downstream Port (SDP)
0BH	DAC SAR	R	00000000				DA	C SAR Value			
13H	Manual SW	R/W	00100111	D- 8	Switching			D+ Switching		V _{BUS} Sw	itching
14H	Manual CHG_CTRL	R/W	00000000	Do Not Use	Do Not Use	Do Not Use	Assert CHG_DETB	MIC_OVP_EN	Assert_D+	Do Not Use	
1BH	Applications1	R/W	X0001000	Do Not Use	Do Not Use	Do Not Use	# of Consec	utive ID Matches	for Attach	Do Not Use	Do Not Use
1CH	Applications2	R/W	XXXX0101	Do Not Use	Do Not Use	Do Not Use	Do Not Use	# ID Checks Code C		Max. Capacit	ance on ID

Table 7. Device ID

- Address: 01H
- Reset Value: 00010000
- Type: Read

Bit #	Name	Size (Bits)	Description
7:3	Version ID	5	Rev 0.0=00010
2:0	Do Not Use	3	Do not use

Table 8. Control

- Address: 02H
- Reset Value: 11010001
- Type: Read/Write

Bit #	Name	Size (Bits)	Description
7	DCDTimeout_EN	1	1: DCD timeout is enabled. 0: DCD timeout is disabled.
6	RESETB	1	1: Do nothing. 0: Reset FSA9285 – resets all of FSA9285 except the Control register (02H), Manual SW (13H), and Manual CHG_CTRL(14H). Note : This bit is momentarily set to 0 on a write. It immediately reverts to 1.
5	ID_DIS	1	 ID_CON resistor detection is disabled after a resistance is detected on ID_CON. ID_CON resistor detection is enabled after a resistance is detected on ID_CON. Note: The FSA9285 continues to monitor for an ID_FLOAT condition.
4	EN_MAN_SW	1	 Configure switches based on Manual SW register settings. Use only defined automatic switch settings. This bit needs to be cleared in case of a weak battery explicitly or the device must be defaulted via a V_{DDIO} reset for the dead battery case to operate properly.
3	Do Not Use	1	Do not use.
2	Do Not Use	1	Do not use.
1	Do Not Use	1	Do not use.
0	INT Mask	1	 Mask Interrupt – Do not interrupt baseband processor when a bit is set in the Interrupt register. Unmask Interrupt – Interrupt baseband processor if any bit is set in the Interrupt register.

Table 9. Interrupt

- Address: 03H
- Reset Value: 00000000
- Type: Read/Clear

Bit #	Name	Size (Bits)	Description		
7	Do Not Use	1	N/A		
6	OCP Change	1	1: OCP state changed. 0: OCP state has not changed.		
5	OVP Change	1	1: OVP state changed. 0: OVP state has not changed.		
4	MIC_OVP Change	1	1: MIC OVP state changed. 0: MIC OVP state not changed.		
3	Resistor Code Change	1	 Resistor Code value changed. Resistor Code value has not changed. Note: This interrupt is disabled when ID_DIS=1. The FSA9285 interrupts if transitioning from a non-zero Resistor Code to a Resistor Code=zero (ID_CON floating). 		
2	V _{BUS} _Valid Change	1	 V_{BUS}_Valid state changed. V_{BUS}_Valid state has not changed. 		
1	BC1.2_Complete	1	 BC1.2 charger detection complete. No change in BC1.2 charger detection status. 		
0	Do Not Use	1	N/A		

Table 10. Interrupt Mask

- Address: 05H
- Reset Value: 00000000
- Type: Read/Write

Bit #	Name	Size (Bits)	Description
7	Do Not Use	1	N/A
6	OCP	1	1: Mask OCP state-change interrupt. 0: Do not mask OCP state-change interrupt.
5	OVP	1	1: Mask OVP state-change interrupt. 0: Do not mask OVP state-change interrupt.
4	MIC_OVP	1	1: Mask MIC_OVP state-change interrupt. 0: Do not mask MIC_OVP state-change interrupt.
3	Resistor Code Change	1	1: Mask Resistor Code value-change interrupt. 0: Do not mask Resistor Code value-change interrupt.
2	V _{BUS} _Valid	1	 Mask V_{BUS_Valid} state-change interrupt. Do not mask V_{BUS_Valid} state-change interrupt.
1	BC1.2_Complete	1	1: Mask BC1.2_complete interrupt. 0: Do not mask BC1.2_complete interrupt.
0	Do Not Use	1	N/A

Table 11. Resistor Code

- Address: 07H
- Reset Value: 00000000
- Type: Read

Bit #	Name	Size (Bits)	Description
7:5	Do Not Use	3	N/A
4:0	Resistor Code	5	Resistor code value read from ID_CON (see Table 3 Resistor Identification).

Table 12. Timing Set

- Address: 08H
- Reset Value: 00000000
- Type: Read/Write

Bit #	Name	Size (Bits)	Description
7:4	Do Not Use	4	N/A
3:0	Resistor Detection Time	4	Time to complete the ID_CON resistance measurement for accessory detection (see Table 13).

Table 13. Timing Table for Timing Set Register

Setting Value	Resistor Detection Time (ms)
0000	50
0001	100
0010	150
0011	200
0100	300
0101	400
0110	500
0111	600
1000	700
1001	800
1010	900
1011	1000
1100	
1101-1111	

Table 14. Status

- Address: 09H
- Reset Value: 0000000
- Type: Read/Write

Bit #	Name	Size (Bits)	Description
7	ID_SHORT	1	1: ID_SHORT detected. 0: ID_SHORT not detected.
6	OCP	1	1: V _{BUS} in over-current state. 0: V _{BUS} not in over-current state.
5	OVP	1	 V_{BUS} in over-voltage state. V_{BUS} not in over-voltage state.
4	MIC_OVP	1	1: MIC in over-voltage state 0: MIC not in over-voltage state
3	/ID_FLOAT	1	 1: ID_CON not floating (resistor detected). 0: ID_CON floating (no resistor detected).
2	V _{BUS} _Valid	1	1: V _{BUS} is valid. 0: V _{BUS} is not valid.
1	BC1.2_Active	1	1: BC1.2 is active. (This is true if a connect is attempted with DCD Timeout disabled and no DCD.)0: BC1.2 IDLE.
0	DCD	1	 Data contact detected on last charger-detect sequence. No data contact detected on last charger-detect sequence.

Table 15. Device Type

- Address: 0AH
- Reset Value: 00000000
- Type: Read

Bit #	Name	Size (Bits)	Description
7	Do Not Use	1	Do not use.
6	Do Not Use	1	Do not use.
5	Dock	1	 Charging dock detected. Charging dock not detected.
4	Do Not Use	1	Do not use.
3	Do Not Use	1	Do not use.
2	DCP	1	 USB dedicated charging port (DCP) charger detected. USB dedicated charging port (DCP) charger not detected.
1	CDP	1	 USB charging downstream port (CDP) charger detected. USB charging downstream port (CDP) charger not detected.
0	SDP	1	 USB standard downstream port (SDP) detected. USB standard downstream port (SDP) not detected.

Table 16. DAC SAR

- Address: 0BH
- Reset Value: 00000000
- Type: Read

Bit #	Name	Size (Bits)	Description
7:0	DAC_SAR	8	DAC_SAR Value – Indicates raw 8-bit resistance value detected (see Table 3 Resistor Identification).

Table 17. Manual SW⁽²¹⁾

- Address: 13H
- Reset Value: 00100111
- Type: Read/Write

Bit #	Name	Size (Bits)	Description	
7:5	DM_CON Switching	3	000: Open all switches. 001: DM_CON connected to DM_HOST1 of USB port. 010: DM_CON connected to Audio_L. 011: DM_CON connected to DM_HOST2 of USB port.	
4:2	DP_CON Switching	3	000: Open all switches. 001: DP_CON connected to DP_HOST1 of USB port. 010: DP_CON connected to Audio_R. 011: DP_CON connected to DP_HOST2 of USB port. 100: DP_CON connected to MIC.	
1:0 V _{BUS_IN} Switching 2 10		2	 00: Open all switches. 01: Do not use. 10: V_{BUS_IN} connected to MIC. 11: V_{BUS_IN} connected to V_{BUS_OUT} (phone sinks current from attached accessory).⁽²²⁾ 	

Notes:

21. When changing manual switch configurations on a single attach, the accessory must pass through an "Open All Switches" state between configurations. Manual Modes require the EN_MAN_SW Manual Mode bit in the Control register (02H) to be set.

22. $V_{BUS_{IN}}$ must be valid for the charger FET to close in manual FET switching.

FSA9285---

Table 18. Manual CHG_CTRL

- Address: 14H
- Reset Value: 00000000
- Type: Read/Write

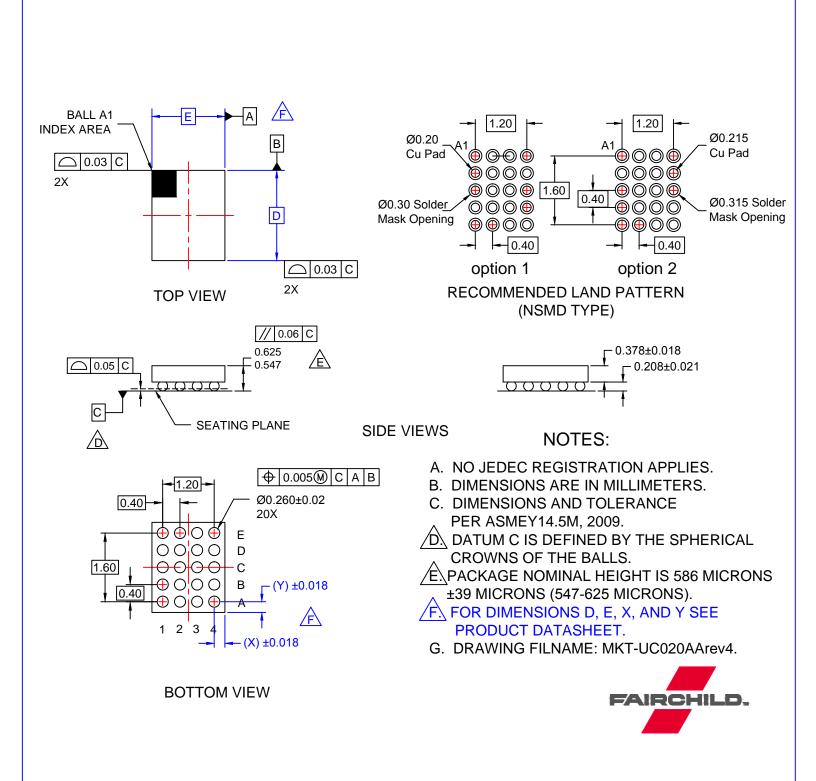
Bit #	Name	Size (Bits)	Description	
7:5	Do Not Use	3	N/A	
4	Assert CHG_DETB	1	 Assert CHG_DETB LOW. Normal operation (CHG_DETB asserted LOW for DCP, CDP, ACA, and Car Kit Type 1/2; CHG_DETB is HIGH otherwise.) Note: EN_MAN_SW is not required for this bit to take effect. 	
3	MIC_OVP_EN	1	 Enable MIC_OVP (only use when MIC is connected to V_{BUS}). Do not enable MIC_OVP. Note: EN_MAN_SW is not required for this bit to take effect. 	
2	Assert_D+	1	 Force 0.6 V on DP_CON. Do not force 0.6 V on DP_CON. Note: EN_MAN_SW is not required for this bit to take effect, V_{BUS} must be value. 	
1:0	Do Not Use	2	N/A	

Table 19. Applications1

- Address: 1BH
- Reset Value: X0001000
- Type: Read/Write

Bit #	Name	Size (Bits)	Description
7:5	Do Not Use	3	N/A
4:2	# Consecutive ID Matches for Attach	3	000: 1 001: 2 010: 3 011: 4 100: 5 101: 6 110: 7 111: 8
1:0	Do Not Use	2	N/A

Table 20. Applications2


- Address: 1CH
- Reset Value: XXXX0101
- Type: Read/Write

Bit #	Name	Size (Bits)		Description	
7:4	Do Not Use	4	N/A		
3:2	# ID Checks for Resistor Code Change	2	00: 1 01: 2 10: 3 11: 4		
1:0	Max. Capacitance on ID	2	00: 500 pF 01: 1 nF 10: 1.5 nF 11: 2 nF		

Product-Specific Dimensions

Product	D	E	Х	Y
FSA9285UCX	2.010 mm	1.672 mm	0.236 mm	0.205 mm

Part Number	Operating Temperature Range	Top Mark	Package
FSA9285UCX	-40 to +85°C	NX	20-Lead, WLCSP (2.010 x 1.672 x 0.625 mm, 0.4 mm Pitch)

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC