

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

May 2013

TIL111M, TIL117M, MOC8100M General Purpose 6-Pin Phototransistor Optocouplers

Features

- UL Recognized (File # E90700)
- VDE Recognized (File #102497 for white package)Add Option V (e.g., TIL111VM)

Applications

- Power Supply Regulators
- Digital Logic Inputs
- Microprocessor Inputs
- Appliance Sensor Systems
- Industrial Controls

General Description

The MOC8100M, TIL111M, and TIL117M optocouplers consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor in a 6-pin dual in-line package.

Schematic

ANODE 1 0 6 BASE CATHODE 2 0 5 COLLECTOR NC 3 0 4 EMITTER

Figure 1. Schematic

Package Outlines

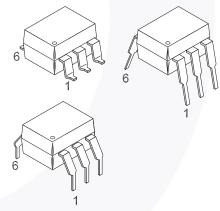


Figure 2. Package Outlines

Safety and Insulation Ratings

As per IEC60747-5-2. This optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1				
	For Rated Mains Voltage < 150 V _{RMS}		I–IV		
	For Rated Mains Voltage < 300 V _{RMS}		I–IV		
	Climatic Classification		55/100/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
CTI	Comparative Tracking Index	175			
V _{PR}	Input to Output Test Voltage, Method b, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1594			
	Input to Output Test Voltage, Method a, $V_{IORM} \times 1.5 = V_{PR}$, Type and Sample Test with $t_m = 60$ s, Partial Discharge < 5 pC	1275			
V _{IORM}	Maximum Working Insulation Voltage	850			V _{peak}
V _{IOTM}	Highest Allowable Over Voltage	6000			V _{peak}
	External Creepage	7			mm
	External Clearance	7			mm
	Insulation Thickness	0.5			mm
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V	10 ⁹			Ω

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Device	Value	Units
Total Devi	ce				l
T _{STG}	Storage Temperature		All	-40 to +150	°C
T _{OPR}	Operating Temperature		All	-40 to +100	°C
T _{SOL}	Lead Solder Temperature		All	260 for 10 sec	°C
P _D	Total Device Power Dissipation @ T _A = 25°C		All	250	mW
	Derate Above 25°C			2.94	mW/°C
Emitter					
I _F	DC/Average Forward Input Current		All	60	mA
V _R	Reverse Input Voltage		TIL111M	3	V
		МО	C8100M, TIL117M	6	
I _F (pk)	Forward Current – Peak (300 µs, 2% Duty Cycle)		All	3	Α
P_{D}	LED Power Dissipation @ T _A = 25°C		All	120	mW
	Derate Above 25°C			1.41	mW/°C
Detector	7				
V_{CEO}	Collector-Emitter Voltage		All	30	V
V _{CBO}	Collector-Base Voltage		All	70	V
V _{ECO}	Emitter-Collector Voltage	TI	L111M, TIL117M	7	V
V_{EBO}	Emitter-Base Voltage		All	7	
P_{D}	Detector Power Dissipation @ T _A = 25°C		All	150	mW
	Derate Above 25°C			1.76	mW/°C

Electrical Characteristics

 $T_A = 25$ °C unless otherwise specified.

Individual Component Characteristics

Symbol	Parameter	Test Conditions		Device	Min.	Тур.*	Max.	Unit
Emitter						•	'	
V _F			TIL111M		1.2	1.4	V	
	Voltage	$I_F = 10 \text{ mA for}$ $T_A = 0^{\circ}\text{C to } 70^{\circ}\text{C}$		MOC8100M,		1.2	1.4	
		MOC8100M,	T _A = -55°C	TIL117M		1.32		
		I _F = 16 mA for TIL117M	T _A = +100°C			1.10		
I _R	Reverse Leakage	V _R = 3.0 V		TIL111M, TIL117M		0.001	10	μΑ
	Current	V _R = 6.0 V		MOC8100M		0.001	10	μΑ
Detector								
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 1.0 mA, I _F :	= 0	All	30	100		V
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu A, I_F = 0$		All	70	120		V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E = 10 μA, I _F = 0		All	7	10		V
BV _{ECO}	Emitter-Collector Breakdown Voltage	I _F = 100 μA, I _F = 0		TIL111M, TIL117M	7	10		V
I _{CEO}	Collector-Emitter	V _{CE} = 10 V, I _F =	: 0	TIL111M, TIL117M		1	50	nA
Dark Current	Dark Current	V _{CE} = 5 V, T _A =	25°C	MOC8100M		0.5	25	nA
		V _{CE} = 30 V, I _F =	: 0, T _A = 70°C	TIL117M, MOC8100M		0.2	50	μΑ
I _{CBO}	Collector-Base Dark	V _{CB} = 10 V		TIL111M, TIL117M			20	nA
I _{CBO}	Current	V _{CB} = 5 V		MOC8100M			10	nA
C _{CE}	Capacitance	$V_{CE} = 0 \text{ V, f} = 1$	MHz	All		8		pF

^{*}All Typical values at $T_A = 25$ °C

Electrical Characteristics (Continued)

 $T_A = 25$ °C unless otherwise specified.

Transfer Characteristics

Symbol	Parameter	Test Conditions	Device	Min	Тур*	Max	Unit
DC Chara	cteristics						
CTR _{CE}	Current Transfer Ratio, Collector to Emitter	I _F = 10 mA, V _{CE} = 10 V	TIL117M	50			%
		I _F = 1 mA, V _{CE} = 5 V	MOC8100M 50			%	
		I _F = 1 mA, V _{CE} = 5 V, T _A = 0°C to +70°C		30			
I _{C(ON)}	On-State Collector Current (Phototransistor Operation)	I _F = 16 mA, V _{CE} = 0.4 V	TIL111M	2			mA
	On-State Collector Current (Photodiode Operation)	I _F = 16 mA, V _{CB} = 0.4 V		7			μA
CL (SAI)	Collector-Emitter Saturation Voltage	$I_C = 500 \mu A, I_F = 10 mA$	TIL117M			0.4	V
		I _C = 2 mA, I _F = 16 mA	TIL111M			0.4	
		I _C = 100 μA, I _F = 1 mA	MOC8100M			0.5	
AC Charac	cteristics				•		
c _{ON}	Turn-On Time	$I_C = 2 \text{ mA}, V_{CC} = 10 \text{ V},$	MOC8100M			20	μs
		$R_L = 100 \Omega \text{ (Fig. 13)}$	TIL117M			10	
C _{OFF}	Turn-Off Time		MOC8100M			20	μs
			TIL117M			10	
t _r	Rise Time		MOC8100M		2		μs
t _f	Fall Time		TIL117M		2		
t _r	Rise Time (Phototransistor Operation)	$I_{C(ON)} = 2 \text{ mA}, V_{CC} = 10 \text{ V},$ $R_L = 100 \Omega \text{ (Fig. 13)}$	TIL111M			10	μs
t _f	Fall Time (Phototransistor Operation)						

Isolation Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.*	Max.	Units
V _{ISO}	Input-Output Isolation Voltage	f = 60 Hz, t = 1 s	7500			V _{AC(PK)}
R _{ISO}	Isolation Resistance	V _{I-O} = 500 V _{DC}	10 ¹¹			Ω
C _{ISO}	Isolation Capacitance	$V_{I-O} = 0$, $f = 1 MHz$		0.2		pF

^{*}All Typical values at $T_A = 25$ °C.

Typical Performance Characteristics

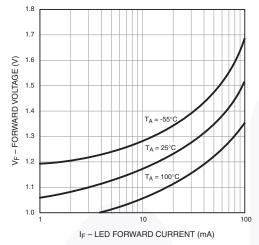


Figure 3. LED Forward Voltage vs. Forward Current

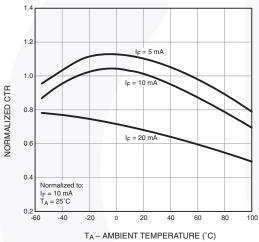


Figure 5. Normalized CTR vs. Ambient Temperature

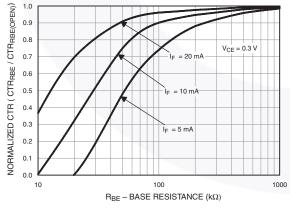


Figure 7. CTR vs. RBE (Saturated)

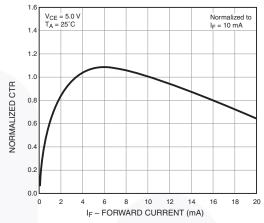


Figure 4. Normalized CTR vs. Forward Current

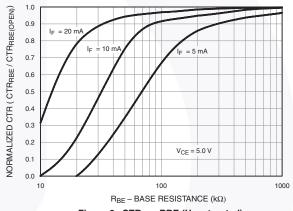


Figure 6. CTR vs. RBE (Unsaturated)

Figure 8. Collector-Emitter Saturation Voltage vs Collector Current

Typical Performance Characteristics (Continued)

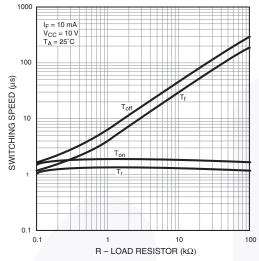


Figure 9. Switching Speed vs. Load Resistor

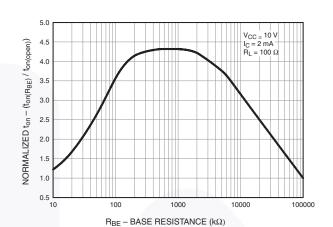
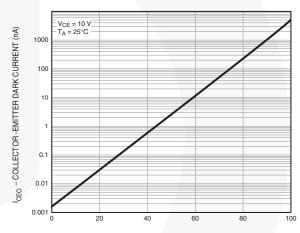



Figure 10. Normalized t_{on} vs. R_{BE}

Figure 11. Normalized toff vs. RBE

 T_A – AMBIENTTEMPERATURE (°C)

Figure 12. Dark Current vs. Ambient Temperature

TEST CIRCUIT

V_{CC} = 10 V INPUT OUTPUT Adjust IF to produce Ic = 2 mA

WAVEFORMS

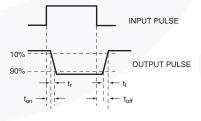


Figure 13. Switching Time Test Circuit and Waveforms

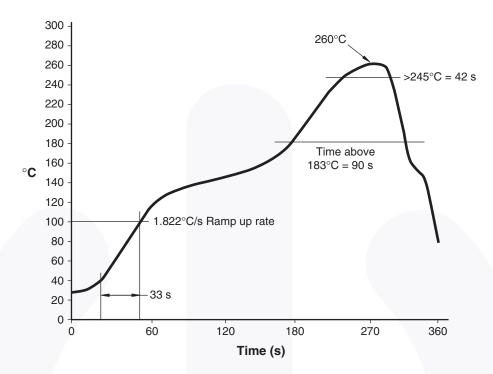
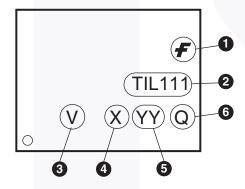



Figure 14. Reflow Profile

Ordering Information

Option	Order Entry Identifier (Example)	Description
No option	TIL111M	Standard Through-Hole Device
S	TIL111SM	Surface Mount Lead Bend
SR2	TIL111SR2M	Surface Mount; Tape and Reel
Т	TIL111TM	0.4" Lead Spacing
V	TIL111VM	VDE 0884
TV	TIL111TVM	VDE 0884, 0.4" Lead Spacing
SV	TIL111SVM	VDE 0884, Surface Mount
SR2V	TIL111SR2VM	VDE 0884, Surface Mount, Tape and Reel

Marking Information

Definitions					
1	Fairchild logo				
2	Device number				
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)				
4	One-digit year code, e.g., '3'				
5	Two-digit work week ranging from '01' to '53'				
6	Assembly package code				

^{*}Note – Parts that do not have the 'V' option (see definition 3 above) that are marked with date code '325' or earlier are marked in portrait format.

Carrier Tape Specification

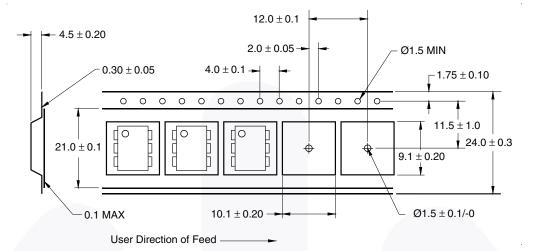
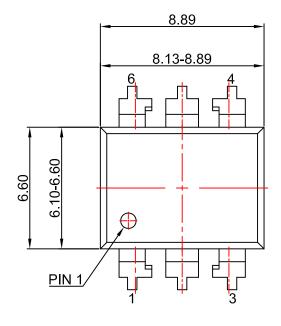
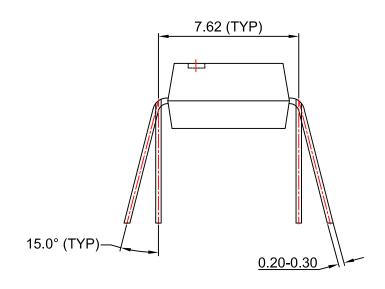
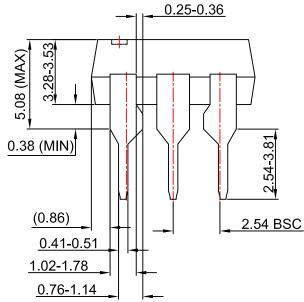
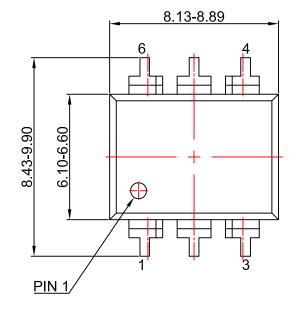
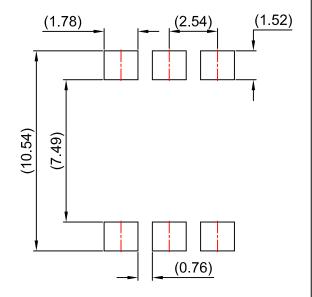
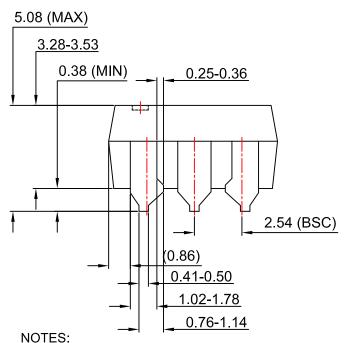





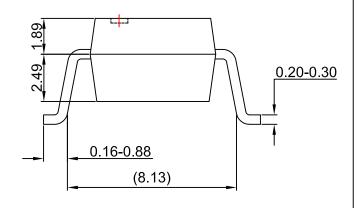
Figure 15. Carrier Tape Specification





NOTES:


- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06BREV4.



LAND PATTERN RECOMMENDATION

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06CREV4.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative