3.3 V 200 MHz 1:2 LVCMOS/LVTTL Low Skew Fanout Buffer

Description

The NB3M8302C is 1:2 fanout buffer with LVCMOS/LVTTL input and output. The device supports the core supply voltage of 3.3 V (V_{DD} pin) and output supply voltage of 2.5 V or 3.3 V (V_{DDO} pin). The V_{DDO} pin powers the two single ended LVCMOS/LVTTL outputs.

The NB3M8302C is Form, Fit and Function (pin to pin) compatible to ICS8302 and ICS8302I. The NB3M8302C is qualified for industrial operating temperature range.

Features

- Input Clock Frequency up to 200 MHz
- Low Output to Output Skew: 25 ps typical
- Low Part to Part Skew: 250 ps typical
- Low Additive RMS Phase Jitter
- Input Clock Accepts LVCMOS/ LVTTL Levels
- Operating Voltage:
 - Core Supply: $V_{DD} = 3.3 \text{ V} \pm 5\%$
 - Output Supply: $V_{DDO} = 3.3 \text{ V} \pm 5\%$ or 2.5 V $\pm 5\%$
- Operating Temperature Range:
- Industrial: -40° C to $+85^{\circ}$ C
- These Devices are Pb-Free and are RoHS Compliant

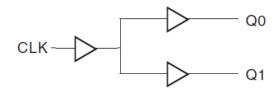
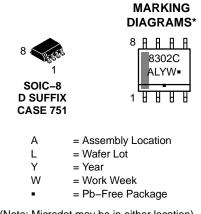



Figure 1. Block Diagram

ON Semiconductor®

www.onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

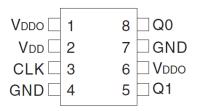


Figure 2. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin Number	Name	Туре	Description
1, 6	VDDO	Output Power	Clock output Supply pin.
2	VDD	Input and Core Power	Input and Core Supply pin.
3	CLK	LVCMOS/LVTTL Input	Clock Input. Internally pull-down.
4, 7	GND	Ground	Supply Ground.
5	Q1	LVCMOS/LVTTL Output	LVCMOS/LVTTL Clock output.
8	Q0	LVCMOS/LVTTL Output	LVCMOS/LVTTL Clock output.

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition	Min	Мах	Unit
V _{DD} , V _{DDO}	Power Supply		-	4.6	V
VI	Input Voltage		-0.5	VDD + 0.5 V	V
T _{stg}	Storage Temperature		-65	+150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient) SOIC-8	0 lfpm 500 lfpm		80 55	°C/W
θ _{JC}	Thermal Resistance (Junction to Case) (Note 1)			12–17	°C/W
T _{sol}	Wave Solder	3 sec		265	°C
MSL	Moisture Sensitivity SOIC-8	Indefinite Time Out of Drypack (Note 2)	Level 1		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

JEDEC standard multilayer board – 2S2P (2 signal, 2 power)
For additional information, see Application Note AND8003/D.

Table 3. DC OPERATING CHARACTERISTICS

 $(V_{DD} = V_{DDO} = 3.3 \text{ V}\pm5\%, V_{DD} = 3.3 \text{ V}\pm5\%, V_{DDO} = 2.5 \text{ V}\pm5\%; T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Symbol	Parameter	Condition	Min	Тур	Max	Unit
R _{IN}	Input Pull-down Resistor (CLK Pin)			51		kΩ
C _{IN}	Input Capacitance			4		pF
R _{OUT}	Output Impedance (Note 3)		5	7	12	Ω
C _{PD}	Power Dissipation Capacitance (per output)	V _{DD} = V _{DDO} = 3.465 V		22		pF
		V_{DD} = 3.465 V, V_{DDO} = 2.625 V		16		
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
I _{IH}	Input High Current	V _{IN} = V _{DD} = 3.465 V			150	μΑ
IIL	Input Low Current	V _{DD} 3.465 V, V _{IN} = 0.0 V	-0.5			μΑ

3. Outputs terminated with 50 Ω to V_{DDO}/2. See Figure 4 for supply considerations. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. DC OPERATING CHARACTERISTICS (T_A = -40° C to $+85^{\circ}$ C)

Symbol	Parameter	Condition	Min	Max	Unit
/ _{DD} = 3.3 V	/±5%, V _{DDO} = 2.5 V±5%		-		
V _{DDO}	Output Supply Voltage		2.375	2.625	V
V _{OH}	Output HIGH Voltage	I _{OH} = –16 mA	2.1		V
		I _{OH} = -100 μA	2.2		
		50 Ω to V_DDO/2	1.8		
V _{OL}	Output LOW Voltage	I _{OL} = 16 mA		0.15	V
	I _{OL} = 100 μA	I _{OL} = 100 μA		0.2	
		50 Ω to V _{DDO} /2		0.5	1

V_{DD} = V_{DDO} = 3.3 V±5%

V _{DDO}	Output Supply Voltage		3.135	3.465	V
V _{OH}	Output HIGH Voltage	I _{OH} = -16 mA	2.9		V
		I _{OH} = −100 μA	2.9		
		50 Ω to V_{DDO}/2	2.6		
V _{OL}	Output LOW Voltage	I _{OL} = 16 mA		0.15	V
		I _{OL} = 100 μA		0.2	
		50 Ω to V _{DDO} /2		0.5	

Table 5. DC OPERATING CHARACTERISTICS	$(T_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{DD} = V_{DDO})$	= 3.3 V \pm 5%, V _{DD} = 3.3 V \pm 5%, V _D	_{DO} = 2.5
V±5%)			

Symbol	Parameter	Condition	Min	Max	Unit
I _{DD}	Quiescent Power Supply Current	No Load		13	mA
I _{DDO}	Quiescent Power Supply Current	No Load		4	mA
V _{IH}	Input HIGH Voltage		2	V _{DD} + 0.3	V
V _{IL}	Input LOW Voltage		-0.3	1.3	V

Table 6. AC CHARACTERISTICS (Note 4)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
$T_A = -40^{\circ}C$ to +85°C; $V_{DD} = V_{DDO} = 3.3 V \pm 5\%$						
F _{IN}	Input Frequency				200	MHz
t _{PLH}	Propagation Delay (Note 5)	Fin = 200 MHz	1.9		3.1	ns
t _{SKEW}	Output to Output Skew(Note 6)			25	85	ps
	Part to Part Skew (Note 6)			250	800	
t SKEWDC	Output Duty Cycle (see Figure 3)	$Fin \leq 133 \text{ MHz}$	45		55	%
		133 MHz < Fin < 200 MHz	40		60	
tr/tf	Output rise and fall times (Note 7)	20% to 80%, RS = 33 Ω	250		800	ps

$T_A = -40^{\circ}C$ to +85°C; $V_{DD} = 3.3 V \pm 5\%$, $V_{DDO} = 2.5 V \pm 5\%$

F _{IN}	Input Frequency				200	MHz
t _{PLH}	Propagation Delay (Note 5)	Fin = 200 MHz	2.0		3.3	ns
t _{SKEW}	Output to Output Skew(Note 6)			25	85	ps
	Part to Part Skew (Note 6)			250	800	
t _{SKEWDC}	Output Duty Cycle (see Figure 3)	$Fin \leq 133 MHz$	45		55	%
		133 MHz < Fin < 200 MHz	40		60	
tr/tf	Output rise and fall times (Note 7)	20% to 80%, RS = 33 Ω	200		650	ps

4. Clock input with 50% duty cycle. Outputs terminated with 50 Ω to V_{DDO}/2. See Figures 3 and 4.

5. Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output. 6. Similar input conditions and the same supply voltages. Measured at $V_{DDO}/2$. See Figures 3 and 4.

7. RS is Series Resistance at the clock outputs.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

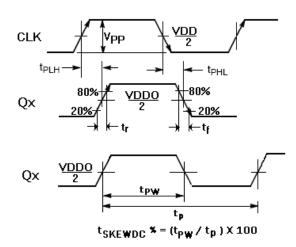
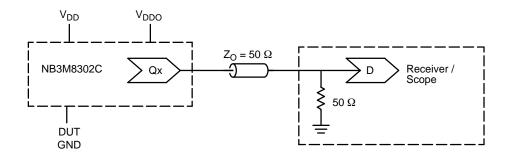
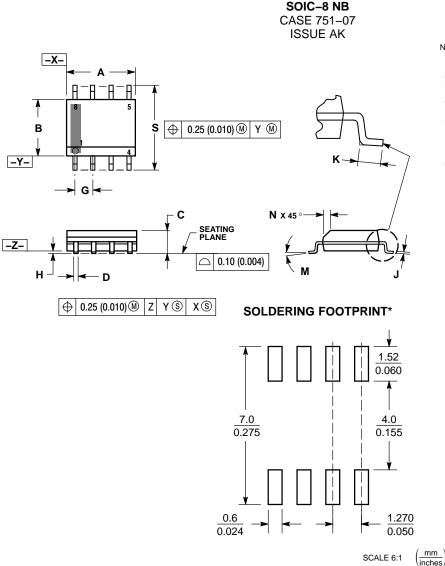



Figure 3. AC Reference Measurement

Spec Condition:	TEST SETUP V _{DD} :	TEST SETUP V _{DDO} :	TEST SETUP DUT GND:
$V_{DD} = V_{DDO} = 3.3 \text{ V} \pm 5\%$	1.65 V ±5%	1.65 V ±5%	–1.65 V ±5%
V_{DD} = 3.3 V ±5%; V_{DDO} = 2.5 V ±5%	2.05 V ±5%	1.25 V ±5%	-1.25 V ±5%


Figure 4. Output Driver Typical Device Evaluation and Termination Setup

ORDERING INFORMATION

Device	Package	Shipping [†]
NB3M8302CDG	SOIC–8 (Pb–Free)	98 Units / Rail
NB3M8302CDR2G	SOIC–8 (Pb–Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed Solitzo wins in engine to solitze and induced in gradients, and entities, and entities, and entities of solitzed and endities of the or authorized for use as components in systems intended for surgical inplant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

- 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. 2 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 3
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR 5. PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. 6.

	MILLIMETERS		INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
в	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	7 BSC	0.050 BSC			
Н	0.10	0.25	0.004	0.010		
ſ	0.19	0.25	0.007	0.010		
κ	0.40	1.27	0.016	0.050		
Μ	0 °	8 °	0 °	8 °		
Ν	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		