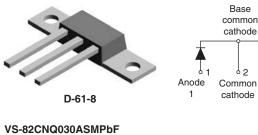
Vishay Semiconductors

Schottky High Performance Rectifier Gen 3, D-61 Package, 2 x 40 A

γ3


Anode

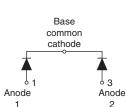
2

↓ 3 Anode

2

VS-82CNQ030APbF

www.vishay.com



VS-82CNQ030ASLPbF

D-61-8-SI

62

Common

cathode

01

Anode

1

PRODUCT SUMMARY					
Package	D-61				
I _{F(AV)}	2 x 40 A				
V _R	30 V				
V _F at I _F	0.47				
I _{RM} max.	280 mA at 125 °C				
T _J max.	150 °C				
Diode variation	Common cathode				
E _{AS}	36 mJ				

FEATURES

- 150 °C T_J operation
- Dual center tap module
- Very low forward voltage drop
- High frequency operation
- High power discrete
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- New fully transfer-mould low profile, small footprint, high current package
- Through-hole versions are currently available for use in lead (Pb)-free applications ("PbF" suffix)
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

* This datasheet provides information about parts that are RoHS-compliant and/or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information/tables in this datasheet for details.

DESCRIPTION

The center tap Schottky rectifier module series has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	CHARACTERISTICS VALUES U				
I _{F(AV)}	Rectangular waveform	ectangular waveform 80				
V _{RRM}		30	V			
I _{FSM}	t _p = 5 μs sine	5100	А			
V _F	40 A_{pk} , T_J = 125 °C (per leg)	40 A _{pk} , T _J = 125 °C (per leg) 0.37				
TJ	Range	Range -55 to +150				

VOLTAGE RATINGS						
PARAMETER	SYMBOL	VS-82CNQ030APbF	UNITS			
Maximum DC reverse voltage	V _R	30	V			
Maximum working peak reverse voltage	V _{RWM}		v			

Revision: 05-Aug-14

1

Document Number: 94258

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST COND	VALUES	UNITS		
Maximum average forward current See fig. 5	I _{F(AV)}	50 % duty cycle at T _C = 119 °C, rectangular waveform		80		
Maximum peak one cycle non-repetitive surge current per leg		5 μs sine or 3 μs rect. pulse	Following any rated load condition and with	5100	А	
See fig. 7	IFSM	10 ms sine or 6 ms rect. pulse	rated V _{RRM} applied	880		
Non-repetitive avalanche energy per leg	E _{AS}	T _J = 25 °C, I _{AS} = 8 A, L = 1.12 mH			mJ	
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical 8		8	А	

ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	. TEST CONDITIONS VALUES U			UNITS	
		40 A	T ₁ = 25 °C	0.47	v	
Maximum forward voltage drop per leg See fig. 1	V _{FM} ⁽¹⁾	80 A	1j=25 0	0.55		
		40 A	T ₁ = 125 °C	0.37		
		80 A	1j=125 0	0.47		
Maximum reverse leakage current per leg	I _{RM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = Rated $V_{\rm B}$	5	mA	
See fig. 2		T _J = 125 °C	VR - naleu VR	280		
Maximum junction capacitance per leg	CT	V_{R} = 5 V_{DC} (test signal range 100 kHz to 1 MHz), 25 °C		3700	pF	
Typical series inductance per leg	LS	Measured lead to lead 5 mm from package body 5.5			nH	
Maximum voltage rate of change	dV/dt	Rated V _R 10 000 V/µ			V/µs	

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range		T _J , T _{Stg}		-55 to +150	°C	
Maximum thermal resistance,	per leg	Б	DC operation (see fig. 4)	0.85		
junction to case	per package	R _{thJC}	DC operation	0.42	°C/W	
Typical thermal resistance, RthC		R _{thCS}	Mounting surface, smooth and greased Device flatness < 5 mils	0.30		
Approximate weight				7.8	g	
				0.28	oz.	
Mounting torque	minimum			40 (35)	kgf · cm	
Mounting torque maximum				58 (50)	(lbf ∙ in)	
Marking device			Case style D-61	82CNQ	030A	
			Case style D-61-8-SM	82CNQ03	BOASM	
			Case style D-61-8-SL	82CNQ03	30ASL	

Vishay Semiconductors

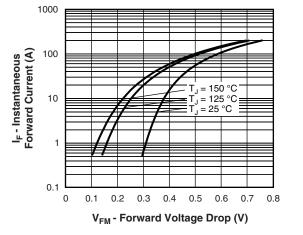
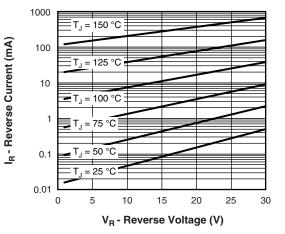
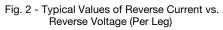




Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

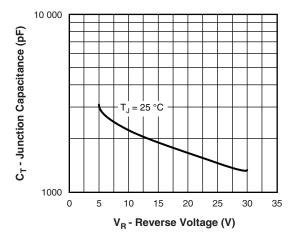
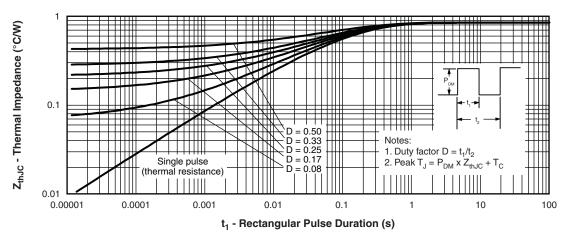
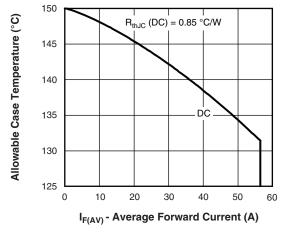
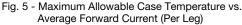
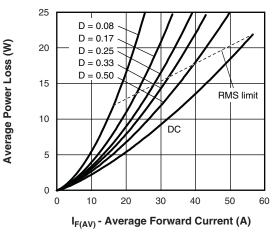



Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)






Revision: 05-Aug-14 3 Document Number: 94258 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors



Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

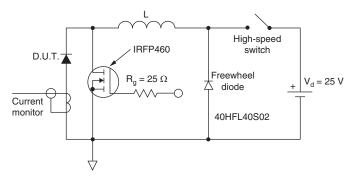


Fig. 8 - Unclamped Inductive Test Circuit

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

 $\begin{array}{l} \mathsf{Pd} = \mathsf{Forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{Inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

Revision: 05-Aug-14

4

Document Number: 94258

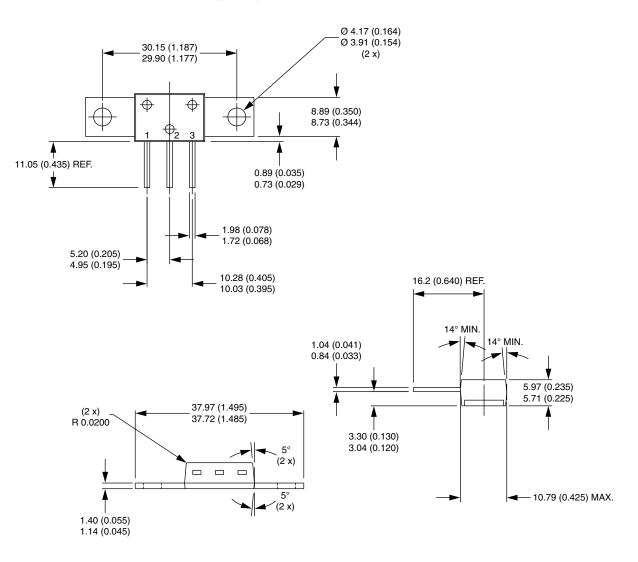
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

ORDERING INFORMATION TABLE

www.vishay.com

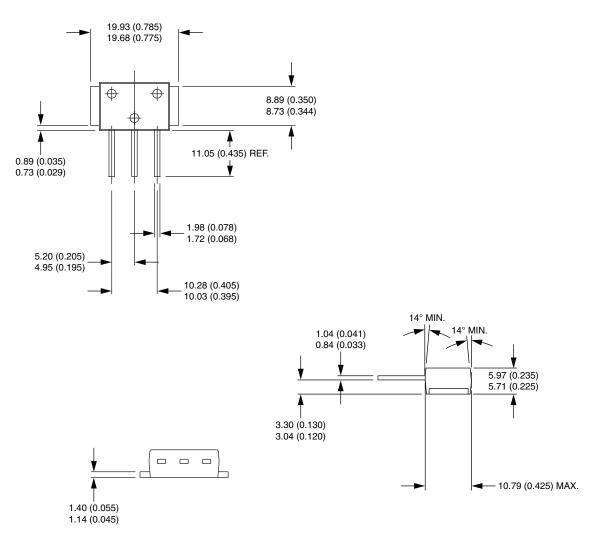
Device code	VS-	82	С	N	Q	030	Α	PbF
	1	2	3	4	5	6	7	8
	1 - 2 - 3 -	Cur	rent ratii	niconduc ng (80 A guration	.)	oduct		
	4 -	Pac	C = common cathode Package: N = D-61					
	5 - 6 - 7 -	Volt	Schottky "Q" series Voltage ratings (030 = 30 V) Package style:					
		• A • As	= D-61-8	8 61-8-S№	1			
	8 -	• No	one = st	andard p d (Pb)-fr		on		

Standard pack quantity: A = 10 pieces; ASM/ASL = 20 pieces

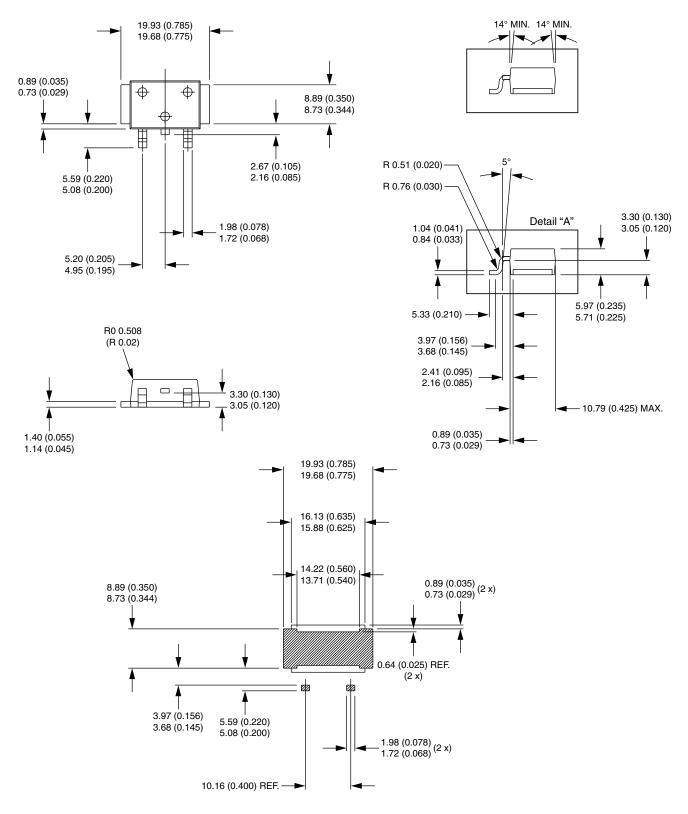

LINKS TO RELATED DOCUMENTS					
Dimensions www.vishay.com/doc?95354					
Part marking information	www.vishay.com/doc?95356				

Vishay Semiconductors

D-61-8, D-61-8-SM, D-61-8-SL


DIMENSIONS - D-61-8 in millimeters (inches)

DIMENSIONS - D-61-8-SM in millimeters (inches)


Vishay Semiconductors

DIMENSIONS - D-61-8-SL in millimeters (inches)

Vishay Semiconductors

Revision: 28-Sep-11 3 Document Number: 95354 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.